Engineering data BHA Servo Actuators

1.	General	4
l.1	Description of Safety Alert Symbols	5
1.2	Disclaimer and Copyright	
2.	Safety Instructions	6
2.1	Hazards	
2.2	Intended Purpose	
2.3	Improper Use	
2.3 2.4	Use in Special Application Areas	
2.5	Declaration of Conformity	
3.	Product Description	10
4.	Ordering Code	12
4.1	Overview	
4.2	Combinations	
5.	Technical Data	14
5.1	General Technical Data	
5.2	Actuator Data	
5.3	Dimensions	
5.4	Accuracy	
5.5	Torsional Stiffness	
5.6	Bearings	
5.7	Motor feedback systems	
5.8	Temperature sensors	
5.9	Battery box	
5.10	Electrical connections	
5.	Selection Procedure	43
5.1	Selection Procedure Servo Actuators	
5.2	Actuator dimensioning	
5.3	Dimensioning output bearing	
7.	Design Guidelines	54
7.1	Notes on design integration	
7.2	Protection against corrosion and penetration of liquids and debris	
8.	Installation and Operation	56
3.1	Transport and Storage	
3.2	Installation	
3.3	Mechanical Installation	
3.4	Electrical Installation	
3.5	Commissioning	
3.6	Overload Protection	
3.7	Shutdown and Maintenance	60

9.	Decommissioning and Disposal	62
40		
10.	Glossary	63
10.1	Technical Data	63
10.2	Labelling Guidelines and Regulations	70

1. General

About this documentation

This document contains safety instructions, technical data and operation instructions for products of Harmonic Drive SE. The documentation is aimed at planners, project engineers, commissioning engineers and machine manufacturers, offering support during selection and calculation of gears, servo actuators, servo motors and accessories.

Instructions of storage

Please keep this document for the entire life of the product, up to its disposal. Please hand over the documentation when re-selling the product.

Additional documentation

When configuring drive systems using Harmonic Drive SE products, additional documents may be required. Documentation is provided for all products offered by Harmonic Drive SE and can be found in pdf format on the website.

www.harmonicdrive.de

Third-party systems

Documentation for parts supplied by third party suppliers, associated with Harmonic Drive® Components, is not included in our standard documentation and should be requested directly from these manufacturers.

Before commissioning servo actuators and servo motors from Harmonic Drive SE with servo drives, we advise you to obtain the relevant documents for each device.

Your feedback

Your feedback is important to us. Please send suggestions and comments about our products and documentation to:

Harmonic Drive SE

Marketing and Communications
Hoenbergstraße 14
65555 Limburg / Lahn

E. Maile info@harmonisdvivo do

E-Mail: <u>info@harmonicdrive.de</u>

1.1 Description of Safety Alert Symbols

Table 5.1

Symbol		Meaning				
<u> </u>	DANGER	Indicates an imminent hazardous situation. If this is not avoided, death or serious injury could occur.				
<u> </u>	WARNING	Indicates a possible hazard. Care should be taken or death or serious injury may result.				
<u></u>	ATTENTION	Indicates a possible hazard. Care should be taken or slight or minor injury may result.				
	ADVICE	Describes a possibly harmful situation. Care should be taken to avoid damage to the system and surroundings.				
	INFO	This is not a safety symbol. This symbol indicates important information.				
	\triangle	Warning of a general hazard. The type of hazard is determined by the specific warning text.				
		Warning of dangerous electrical voltage and its effects.				
		Warning of hot surfaces.				
		Warning of suspended loads.				
		Precautions when handling electrostatic sensitive components.				
		Warning of electromagnetic environmental compatibility.				

1.2 Disclaimer and Copyright

The contents, images and graphics contained in this document are protected by copyright. In addition to the copyright, logos, fonts, company and product names can also be protected by brand law or trademark law. The use of text, extracts or graphics requires the permission of the publisher or rights holder.

We have checked the contents of this document. Since errors cannot be ruled out entirely, we do not accept liability for mistakes which may have occurred. Notification of any mistake or suggestions for improvements will be gratefully received and any necessary correction will be included in subsequent editions.

2. Safety Instructions

Please take note of the information and instructions in this document. Specially designed models may differ in technical detail. If in doubt, we recommend to contact the manufacturer, giving the type designation and serial number for clarification.

2.1 Hazards

Electric servo actuators and motors have dangerous live and rotating parts. All work during connection, operation, repair and disposal must be carried out by qualified personnel as described in the standards EN 50110-1 and IEC 60364! Before starting any work, and especially before opening covers, the actuator must be properly isolated. In addition to the main circuits, the user also has to pay attention to any auxilliary circuits.

Observing the five safety rules:

- Disconnect mains
- Prevent reconnection
- Test for absence of harmful voltages
- Ground and short circuit
- Cover or close off nearby live parts

The measures taken above must only be withdrawn when the work has been completed and the device is fully assembled. Improper handling can cause damage to persons and property. The respective national, local and factory specific regulations must be adhered to.

The surface temperature of products exceed 55 degrees Celsius. The hot surfaces should not be touched.

ADVICE

Cables must not come into direct contact with hot surfaces.

Electric, magnetic and electromagnetic fields are dangerous, in particular for persons with heart pacemaker, implants or similiar. Vulnerable individuals must not be in the close proximity of the product.

Built-in holding brakes are not functionally safe by themselves, particularly with unsupported vertical axes. Functional safety can only be achieved with additional, external mechanical brakes.

Risk of injury due to improper handling of batteries.

Observing the battery safety rules:

- do not insert batteries in reverse. Observe the + and marks on the battery and on the electrical device
- do not short circuit
- do not recharge
- do not force open or damage
- do not expose to fire, water or high temperature
- remove and discard exhausted batteries from the electrical device immediately
- keep batteries out of reach of children. If swallowed, seek medical assistance immediately

⚠ WARNING

The successful and safe operation of products requires proper transport, storage and assembly as well as correct operation and maintenance.

Injury caused by moving or ejected parts:

Contact with moving parts or output elements and the ejection of loose parts (e.g. feather keys) out of the motor enclosure can result in severe injury or death.

- Remove or carefully secure any loose parts
- Do not touch any moving parts
- Protect against all moving parts using the appropriate safety guards

Unexpected movement of machines caused by inactive safety instructions:

Inactive or non adapted safety functions can trigger unexpected machine movements that may result in serious injury or death.

- Observe the information in the appropriate product documentation before commissioning
- Carry out a safety inspection for functions relevant to safety on the entire system, including all safety related components

Make sure the safety functions relevant to your product are applied

- Perform regular function tests
- Only use the system productively after having correctly executed the safety relevant functions

Use suitable lifting equipment to move and lift products with a weight > 20 kg.

Special versions of products may differ in the specification from the standard. Further applicable data from data sheets, catalogues and offers of the special version have to be considered.

2.2 Intended Purpose

Harmonic Drive® Products are intended for industrial or commercial applications.

Typical areas of application are robotics and handling, machine tools, packaging and food machines and similar machines.

The products may only be operated within the operating ranges and environmental conditions shown in the documentation (altitude, degree of protection, temperature range, etc).

Before commissioning of systems and machines including Harmonic Drive® Products, compliance with the Machinery Directive must be established.

2.3 Improper Use

The use of products outside the areas of application mentioned above or beyond the operating areas or environmental conditions described in the documentation is considered as improper use.

2.4 Use in Special Application Areas

The use of the products in one of the following application areas requires a risk assessment and approval by Harmonic Drive SE.

- Aerospace
- · Areas at risk of explosion
- Machines specially constructed or used for a nuclear purpose whose breakdown might lead to the emission of radio activity
- Vacuum
- Household devices
- Medical equipment
- Devices which interact directly with the human body
- · Machines or equipment for transporting or lifting people
- Special devices for use in fairgrounds or amusement parks

2.5 Declaration of Conformity

2.5.1 Gears

Harmonic Drive® Gears are components for installation in machines as defined by the EC Machinery Directive. Commissioning is prohibited until the end product conforms to the provisions of this directive.

Essential health and safety requirements were considered in the design and manufacture of these gear component sets. This simplifies the implementation of the Machinery Directive by the end user for the machinery or the partly completed machinery. Commissioning of the machine or partly completed machine is prohibited until the end product conforms to the EC Machinery Directive.

2.5.2 Servo Actuators and Motors

The Harmonic Drive® Servo Actuators and Motors described in the engineering data comply with the Low Voltage Directive. In accordance with the Machinery Directive, Harmonic Drive® Servo Actuators and Motors are electrical equipment for the use within certain voltage limits as covered by the Low Voltage Directive and thus excluded from the scope of the Machinery Directive. Commissioning is prohibited until the final product conforms to the Machinery Directive.

According to the EMC directive Harmonic Drive® Servo Actuators and Motors are inherently benign equipment, unable to generate electromagnetic disturbance or to be affected by such disturbance.

The conformity to the EU directives of equipment, plant and machinery in which Harmonic Drive® Servo Actuators and Motors are installed must be provided by the user before taking the device into operation.

Equipment, plant and machinery with inverter driven motors must satisfy the protection requirements of the EMC directive. It is the responsibility of the user to ensure that the installation is carried out correctly.

3. Product Description

Permanent precision at a great price

The servo actuators in our BHA Series are the perfect combination of highly dynamic, compact synchronous servo motors and zero backlash gears with output bearings. Our servo actuators with hollow shaft are another outstanding choice thanks to their low weight, small volume, excellent torque density, long lifetime and high standards of reliability.

Features

- Outstanding, lifelong precision
- Large hollow shaft
- Optimally matched components
- Ready to connect servo actuator
- Small outer diameter
- Third party controller compatibility
- Integrated, tilt resistant output bearing
- Increased power density through segmented stator winding

Table 10.1

10

Torque capacity	Accuracy	Dynamic	Tilt resistant	Low weight	Short design	Small outer diameter	Large hollow shaft	Temperature range	Variable feedback systems
•••	•••	•	•••	•	••	•••	•••	••	••

••• perfect •• optimal • good

VOO

Technical Data

Table 11.1

		Data Actuator			Data output bearing			Dimensions		
Size	Ratio i[]	Maximum torque T _{max} [Nm]	Maximum output speed n _{max} [rpm]	Continuous stall torque T _o [Nm]	Dynamic radial load F _{R dyn (max)} [N]	Dynamic axial load F _{A dyn (max)} [N]	Dynamic tilting moment M _{dyn (max)} [Nm]	Outer dimension A [mm]	Length L [mm]	Hollow shaft diameter d _H [mm]
17	50	44	146	34	2300	4500	11.4	100	120	10
17	100 70 73 51	2300	4600	114	106	120	18			
	50	73	130	44				106	127	
20	100	107	65	64	8600	8600 15800	172			18
	160	120	41	64						

Dimensions

Illustration 11.2

Motor feedback system

Table 11.3

	Ordering	Incremen	tal signal	Multi-turn		
Туре	Code	Signal form	Signal	Function Multi-turn	Protocol	
Singleturn	SZE	-	-	-	EnDat® 2.2 / 22	
Absolute	SIH	sinusoidal	1 V _{ss}	-	HIPERFACE®	
	SZB	-	-	-	BiSS-C	
Multi-turn	MZE	-	-	external battery	EnDat® 2.2 / 22	
Absolute	MIH	sinusoidal	1 V _{ss}	mechanical	HIPERFACE®	
	MZB	-	-	external battery	BiSS-C	

4. Ordering Code

4.1 Overview

Table 12.1

Series	Size Version	Ratio		Motor winding	Connector configuration	Motor feedback system	Brake	Option temperature sensor	Special design	
DILA	17A	50	100		AO	LA	SZE	0 = Without	1 = Motor connector (Standard) 2 = Encoder connector (Option)	According to customer requirements
ВНА	20A	50	100	160	DB	LB		B = Brake		
Ordering code										
вна	-20A		-100		-A0	-LA	-MZB	-В	-1	-SP

4.1.1 Motor winding

Table 12.2

Ordering code	Maximum DC bus voltage	Motor feedback
AO	680 VDC	SZE, SIH, SZB, MZE, MIH, MZB
DB	48 VDC	SZE, SIH, SZB, MZE, MIH, MZB

4.1.2 Connector configuration

Table 12.3

Ordering code	Motor	Motor feedback
LA	M23 8 pol.	M23 17 pol.
LB	M23 8 pol.	M23 12 pol.

4.1.3 Motor feedback system

Table 12.3

Ordering code	Туре	Protocol	
SZE		EnDat® 2.2/22	
SIH	Single turn Absolute	HIPERFACE®	
SZB		BiSS-C	
MZE		EnDat® 2.2/22	
MIH	Multi-turn Absolute	HIPERFACE®	
MZB		BiSS-C	

4.2 Combinations

Table 13.1

Size Version		BHA-17A	BHA-20A
Ratio	50	•	•
	100	•	•
	160	-	•
Motor winding	AO	•	•
	DB	•	•
Connector configuration	LA	•	•
	LB	•	•
Motor feedback system	SZE	•	•
	SIH	•	•
	SZB	•	•
	MZE	•	•
	MIH	•	•
	MZB	•	•
Brake	В	•	•
Option temperature sensor	1	•	•
	2	0	0

• available C

O on request

- not available

5. Technical Data

5.1 General Technical Data

Table 14.1

Motor winding	Symbol [Unit]	AO	DB
Insulation class (EN 60034-1)		F	F
Insulation resistance (500 VDC)	MΩ	100	100
Insulation voltage (10 s)	$V_{\rm eff}$	2500	700
Lubrication		4BNo2	4BNo2
Degree of protection (EN 60034-5)		IP65	IP65
Ambient operating temperature	°C	0 40	0 40
Ambient storage temperature	°C	-20 60	-20 60
Altitude (a.s.l.)	m	< 1000	< 1000
Relative humidity (without condensation)	%	20 80	20 80
Vibration resistance (DIN IEC 60068 Part 2-6, 10 500 Hz)	g	5	5
Shock resistance (DIN IEC 60068 Part 2-27, 11 ms)	g	30	30
Corrosion protection (DIN IEC 60068 Part 2-11 Salt spray test)	h	-	-
Temperature sensors		1 x PT1000 ¹⁾	1 x PT1000 ¹⁾
Gear Component Set		CSG	CSG

¹⁾ Save separation according to EN 61800-5-1

The continuous operating characteristics given in the following apply to an ambient temperature of 40 $^{\circ}$ C and an aluminium cooling surface with the following dimensions:

Table 14.2

Series	Size Version	Unit	Dimension
ВНА	17A	[mm]	300 x 300 x15
ВПА	20A	[mm]	300 x 300 x15

15

5.2 Actuator Data

5.2.1 BHA-17A-AO

Actuator BHA Size 17 Motor winding AO 680 VDC maximum DC bus voltage

Technical Data

Table 15.1

	Symbol [Unit]	BHA-17A-AO ¹⁾			
Motor winding		AO			
Motor feedback system		SIH,	MIH	SZB, MZB	, SZE, MZE
Ratio	i[]	50	100	50	100
Maximum output torque	T _{max} [Nm]	44	70	44	70
Maximum speed	n _{max} [rpm]	146	73	120	60
Maximum current	I _{max} [A _{eff}]	2.6	2.1	2.6	2.1
Continuous stall torque	T ₀ [Nm]	34	51	34	51
Continuous stall current	I ₀ [A _{eff}]	1.9	1.4	1.9	1.4
Maximum DC bus voltage	U _{DCmax} [V _{DC}]	68	80	680	
Electrical time constant (20 °C)	t _e [ms]	1.6		1.6	
No load current (20 °C)	I _{NLS} [A _{eff}]	0.12	0.11	0.12	0.11
No load running current constant (20 °C)	K _{INL} [·10 ⁻³ A _{eff} /rpm]	5.2	9.9	5.2	9.9
Torque constant (Motor)	k _{TM} [Nm/A _{eff}]	0	.4	0.4	
AC voltage constant (L-L, 20 °C, at motor)	k _{EM} [V _{eff} /1000 rpm]	27	7.2	27.2	
Maximum motor speed	n _{max} [rpm]	73	00	6000	
Rated motor speed	n _N [rpm]	35	00	35	00
Resistance (L-L, 20 °C)	R _{L-L} [Ω]		4		4
Synchronous industance	L _d [mH]	3	1.1	3	.1
Number of pole pairs	p[]		8		3
Weight without brake	m [kg]	2.5		2	.5
Weight with brake	m [kg]	2.8		2	.8
Hollow shaft diameter	d _H [mm]	18		18	
Rated torque gear component set for calculating the Wave Generator lifetime	T _N [Nm]	21	31	21	31

¹⁾ Preliminary data. Available from November 2020

1044880 09/2020 V00

Moment of Inertia

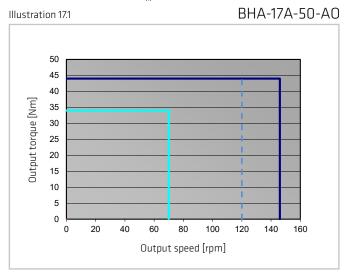
Table 16.1

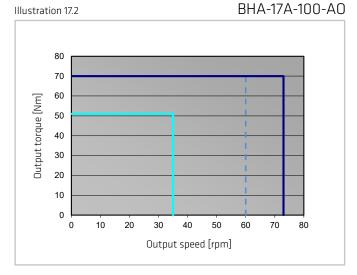
	Symbol [Unit]	BHA-17	7 A-A0 ¹⁾		
Motor feedback system		SZB / MZB			
Ratio	i[]	50	100		
Moment of Inertia output side					
Moment of inertia without brake	J _{out} [kgm²]	0.32	1.29		
Moment of inertia with brake	J _{out} [kgm²]	0.37	1.47		
Moment of Inertia at motor					
Moment of inertia at motor without brake	J [x10 ⁻⁴ kgm²]	1.	3		
Moment of inertia at motor with brake	J [x10 ⁻⁴ kgm²]	1.	5		
Motor feedback system		SZE /	MZE		
Ratio	i[]	50	100		
Moment of Inertia output side					
Moment of inertia without brake	J _{out} [kgm²]	0.44	1.76		
Moment of inertia with brake	J _{out} [kgm²]	0.49	1.95		
Moment of Inertia at motor					
Moment of inertia at motor without brake	J [x10 ⁻⁴ kgm²]	1.	8		
Moment of inertia at motor with brake	J [x10 ⁻⁴ kgm²]	1.	9		
Motor feedback system		SIH /	МІН		
Ratio	i[]	50	100		
Moment of Inertia output side					
Moment of inertia without brake	J _{out} [kgm²]	0.23	0.92		
Moment of inertia with brake	J _{out} [kgm²]	0.28	1.11		
Moment of Inertia at motor					
Moment of inertia at motor without brake	J [x10 ⁻⁴ kgm²]	0.	.9		
Moment of inertia at motor with brake	J [x10 ⁻⁴ kgm²]	1.	1		

¹⁾ Preliminary data. Available from November 2020

Technical Data Motor Brake

Table 16.2


	Symbol [Unit]	BHA-17	'A-AO' ⁾		
Ratio	i[]	50	100		
Brake voltage	U _{Br} [V _{DC}]	24 ±	10 %		
Brake holding torque (at output)	T _{Br} [Nm]	36	70		
Brake power consumption	P _{Br} [W]	9.5			
Brake current to open	I _{OBr} [A _{DC}]	0.	4		
Number of brake cycles at n = 0 rpm		-			
Emergency brake cycles		-			
Opening time	t _o [ms]	-			
Closing time	t _c [ms]	-			


¹⁾ Preliminary data. Available from November 2020

Performance Characteristics

The performance curves shown below are valid for the specified ambient operating temperature and the indicated motor terminal voltage $U_{\scriptscriptstyle M}$.

Legend

Motor terminal voltage $U_{\rm M}$ = 220 ... 400 VAC Limit speed motor feedback

5.2.2 BHA-17A-DB

Actuator BHA Size 17 Motor winding DB 48 VDC maximum DC bus voltage

Technical Data

Table 18.1

	Symbol [Unit]	BHA-17A-DB ¹⁾			
Motor winding	ĺ	DB			
Motor feedback system		SIH,	MIH	SZB, MZB,	SZE, MZE
Ratio	i[]	50	100	50	100
Maximum output torque	T _{max} [Nm]	44	70	44	70
Maximum speed	n _{max} [rpm]	146	73	120	60
Maximum current	I _{max} [A _{eff}]	17.7	14.2	17.7	14.2
Continuous stall torque	T ₀ [Nm]	34	51	34	51
Continuous stall current	I ₀ [A _{eff}]	12.5	9.3	12.5	9.3
Maximum DC bus voltage	U _{DCmax} [V _{DC}]	4	8	48	
Electrical time constant (20 °C)	t _e [ms]	1	.2	1.2	
No load current (20 °C)	I _{NLS} [A _{eff}]	0.79	0.76	0.79	0.76
No load running current constant (20 °C)	K _{INL} [·10 ⁻³ A _{eff} /rpm]	35	66.8	35	66.8
Torque constant (Motor)	k _{TM} [Nm/A _{eff}]	0.	06	0.06	
AC voltage constant (L-L, 20 °C, at motor)	k _{EM} [V _{eff} /1000 rpm]		4	4	
Maximum motor speed	n _{max} [rpm]	73	00	6000	
Rated motor speed	n _N [rpm]	35	00	3500	
Resistance (L-L, 20 °C)	$R_{L-L}[\Omega]$	С	0.1	0	.1
Synchronous industance	L _d [mH]	0.	06	0.	06
Number of pole pairs	p[]		8	3	3
Weight without brake	m [kg]	2.5		2	.5
Weight with brake	m [kg]	2.8		2.	.8
Hollow shaft diameter	d _H [mm]	18		18	
Rated torque gear component set for calculating the Wave Generator lifetime	T _N [Nm]	21	31	21	31

¹⁾ Preliminary Data. Available from November 2020

Moment of Inertia

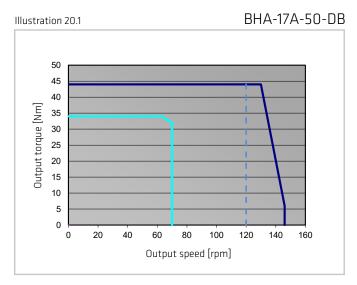
Table 19.1

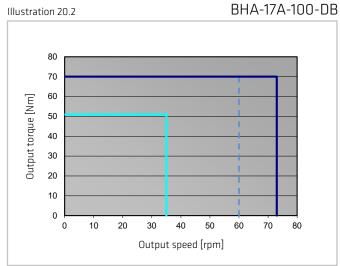
14516 1311				
	Symbol [Unit]	BHA-17A-DB ¹⁾		
Motor feedback system		SZB	/ MZB	
Ratio	i[]	50	100	
Moment of Inertia output side				
Moment of inertia without brake	J _{out} [kgm²]	0.32	1.29	
Moment of inertia with brake	J _{out} [kgm²]	0.37	1.47	
Moment of Inertia at motor				
Moment of inertia at motor without brake	J [x10 ⁻⁴ kgm ²]		1.3	
Moment of inertia at motor with brake	J [x10 ⁻⁴ kgm ²]		1.5	
Motor feedback system		SZE	/ MZE	
Ratio	i[]	50	100	
Moment of Inertia output side				
Moment of inertia without brake	J _{out} [kgm²]	0.44	1.76	
Moment of inertia with brake	J _{out} [kgm²]	0.49	1.95	
Moment of Inertia at motor				
Moment of inertia at motor without brake	J [x10 ⁻⁴ kgm ²]		1.8	
Moment of inertia at motor with brake	J [x10 ⁻⁴ kgm²]		1.9	
Motor feedback system		SIH	/ MIH	
Ratio	i[]	50	100	
Moment of Inertia output side				
Moment of inertia without brake	J _{out} [kgm²]	0.23	0.92	
Moment of inertia with brake	J _{out} [kgm²]	0.28	1.11	
Moment of Inertia at motor				
Moment of inertia at motor without brake	J [x10 ⁻⁴ kgm ²]		0.9	
Moment of inertia at motor with brake	J [x10 ⁻⁴ kgm ²]		1.1	

¹⁾ Preliminary data. Available from November 2020

Technical Data Motor Brake

Table 19.2


	Symbol [Unit]	BHA-17	7A-DB ¹⁾	
Ratio	i []	50	100	
Brake voltage	U _{Br} [V _{DC}]	24 ±	10 %	
Brake holding torque (at output)	T _{Br} [Nm]	36	70	
Brake power consumption	P _{Br} [W]	9.5		
Brake current to open	I _{OBr} [A _{DC}]	0	.4	
Number of brake cycles at n = 0 rpm			-	
Emergency brake cycles		-		
Opening time	t _o [ms]	-		
Closing time	t _c [ms]	-		


¹⁾ Preliminary data. Available from November 2020

Performance Characteristics

The performance curves shown below are valid for the specified ambient operating temperature and the indicated motor terminal voltage $U_{\scriptscriptstyle M}$.

Legend

Intermittent duty

Continuous duty

Motor terminal voltage $U_M = 34 \text{ VAC}$ Limit speed motor feedback

.....

5.2.3 BHA-20A-A0

Actuator BHA Size 20 Motor winding AO 680 VDC maximum DC bus voltage

Technical Data

Table 21.1

	Symbol [Unit]	BHA-20A-A0					
Motor winding				Д	.0		
Motor feedback system			SIH, MIH		SZE	B, MZB, SZE, N	ИZE
Ratio	i[]	50	100	160	50	100	160
Maximum output torque	T _{max} [Nm]	73	107	120	73	107	120
Maximum speed	n _{max} [rpm]	130	65	41	120	60	37.5
Maximum current	I _{max} [A _{eff}]	4.2	3.1	2.3	4.2	3.1	2.3
Continuous stall torque	T ₀ [Nm]	44	64	64	44	64	64
Continuous stall current	I ₀ [A _{eff}]	2.4	1.7	1.1	2.4	1.7	1.1
Maximum DC bus voltage	U _{DCmax} [V _{DC}]		680		680		
Electrical time constant (20 °C)	t _e [ms]		1.6		1.6		
No load current (20 °C)	I _{NLS} [A _{eff}]	0.14	0.13	0.14	0.14	0.13	0.14
No load running current constant (20 °C)	K _{INL} [·10 ⁻³ A _{eff} /rpm]	6.5	12.4	19.3	6.5	12.4	19.3
Torque constant (Motor)	k _{TM} [Nm/A _{eff}]		0.4		0.4		
AC voltage constant (L-L, 20 °C, at motor)	k _{EM} [V _{eff} /1000 rpm]		27.2		27.2		
Maximum motor speed	n _{max} [rpm]		6500		6000		
Rated motor speed	n _N [rpm]		3500			3500	
Resistance (L-L, 20 °C)	$R_{L-L}[\Omega]$		4			4	
Synchronous industance	L _d [mH]		3.1			3.1	
Number of pole pairs	p[]		8			8	
Weight without brake	m [kg]	2.8			2.8		
Weight with brake	m [kg]	3.3			3.3		
Hollow shaft diameter	d _H [mm]	18			18		
Rated torque gear component set for calculating the Wave Generator lifetime	T _N [Nm]	33	52	52	33	52	52

Moment of Inertia

Table 22.1

	Symbol [Unit]	BHA-20A-AO			
Motor feedback system		SZB / MZB			
Ratio	i []	50	100	160	
Moment of Inertia output side					
Moment of inertia without brake	J _{out} [kgm²]	0.34	1.38	3.52	
Moment of inertia with brake	J _{out} [kgm²]	0.39	1.56	4	
Moment of Inertia at motor					
Moment of inertia at motor without brake	J [x10 ⁻⁴ kgm²]		1.4		
Moment of inertia at motor with brake	J [x10 ⁻⁴ kgm²]		1.6		
Motor feedback system			SZE / MZE		
Ratio	i []	50	100	160	
Moment of Inertia output side					
Moment of inertia without brake	J _{out} [kgm²]	0.46	1.85	4.73	
Moment of inertia with brake	J _{out} [kgm²]	0.51	2.04	5.21	
Moment of Inertia at motor					
Moment of inertia at motor without brake	J [x10 ⁻⁴ kgm²]		1.8		
Moment of inertia at motor with brake	J [x10 ⁻⁴ kgm²]		2		
Motor feedback system			SIH / MIH		
Ratio	i []	50	100	160	
Moment of Inertia output side					
Moment of inertia without brake	J _{out} [kgm²]	0.25	1.01	2.6	
Moment of inertia with brake	J _{out} [kgm²]	0.3	1.2	3.08	
Moment of Inertia at motor					
Moment of inertia at motor without brake	J [x10 ⁻⁴ kgm²]		1		
Moment of inertia at motor with brake	J [x10 ⁻⁴ kgm ²]		1.2		

Technical Data Motor Brake

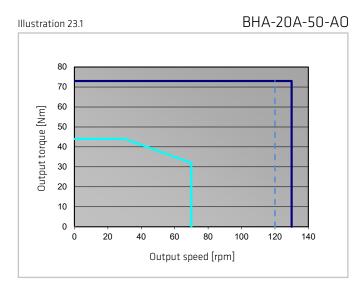
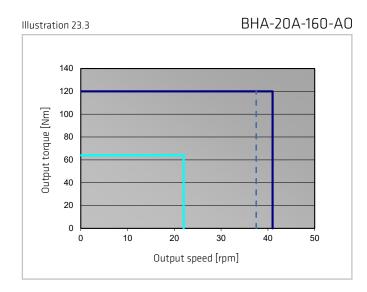

Table 22.2

Table 22.2				
	Symbol [Unit]	BHA-20A-A0		
Ratio	i[]	50	100	160
Brake voltage	U _{Br} [V _{DC}]	24 ± 10 %		
Brake holding torque (at output)	T _{Br} [Nm]	36	72	115
Brake power consumption	P _{Br} [W]		9.5	
Brake current to open	I _{OBr} [A _{DC}]		0.4	
Number of brake cycles at n = 0 rpm			-	
Emergency brake cycles			-	
Opening time	t _o [ms]		-	
Closing time	t _c [ms]		-	



Performance Characteristics

The performance curves shown below are valid for the specified ambient operating temperature and the indicated motor terminal voltage $U_{\rm m}$.

Legend

Intermittent duty
Continuous duty

Motor terminal voltage $U_{\rm M}$ = 220 ... 400 VAC Limit speed motor feedback

.

5.2.4 BHA-20A-DB

Actuator BHA Size 20 Motor winding DB 48 VDC maximum DC bus voltage

Technical Data

Table 24.1

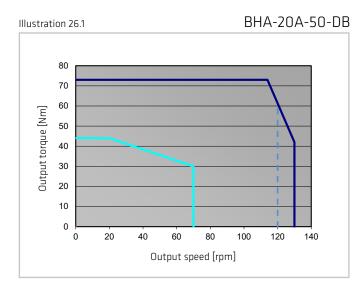
	Symbol [Unit]	BHA-20A-DB					
Motor winding				D	ıB		
Motor feedback system			SIH, MIH		SZE	B, MZB, SZE, N	ΛZE
Ratio	i[]	50	100	160	50	100	100
Maximum output torque	T _{max} [Nm]	73	107	120	73	107	120
Maximum speed	n _{max} [rpm]	130	65	41	120	60	37.5
Maximum current	I _{max} [A _{eff}]	28.5	21	15.4	28.5	21	15.4
Continuous stall torque	T _o [Nm]	44	64	64	44	64	64
Continuous stall current	I ₀ [A _{eff}]	16	11.5	7.4	16	11.5	7.4
Maximum DC bus voltage	U _{DCmax} [V _{DC}]		48		48		
Electrical time constant (20 °C)	t _e [ms]		1.2		1.2		
No load current (20 °C)	I _{NLS} [A _{eff}]	0.99	0.9	0.96	0.99	0.9	0.96
No load running current constant (20 °C)	K _{INL} [·10 ⁻³ A _{eff} /rpm]	44.4	83.8	130.2	44.4	83.8	130.2
Torque constant (Motor)	k _{TM} [Nm/A _{eff}]		0.06		0.06		
AC voltage constant (L-L, 20 °C, at motor)	k _{EM} [V _{eff} /1000 rpm]		4		4		
Maximum motor speed	n _{max} [rpm]		6500		6000		
Rated motor speed	n _N [rpm]		3500		3500		
Resistance (L-L, 20 °C)	$R_{L-L}[\Omega]$		0.1			0.1	
Synchronous industance	L _d [mH]		0.06			0.06	
Number of pole pairs	p[]		8			8	
Weight without brake	m [kg]	2.8			2.8		
Weight with brake	m [kg]	3.3			3.3		
Hollow shaft diameter	d _H [mm]	18			18		
Rated torque gear component set for calculating the Wave Generator lifetime	T _N [Nm]	33	52	52	33	52	52

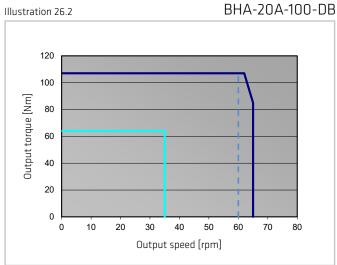
Moment of Inertia

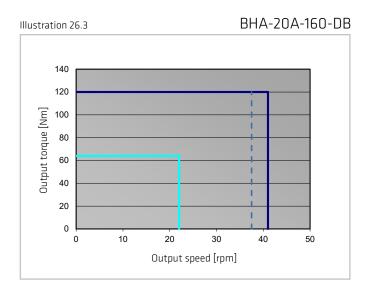
Table 25.1

	Symbol [Unit]	BHA-20A-DB				
Motor feedback system		SZB / MZB				
Ratio	i[]	50	100	160		
Moment of Inertia output side						
Moment of inertia without brake	J _{out} [kgm²]	0.34	1.38	3.52		
Moment of inertia with brake	J _{out} [kgm²]	0.39	1.56	4		
Moment of Inertia at motor						
Moment of inertia at motor without brake	J [x10 ⁻⁴ kgm ²]		1.4			
Moment of inertia at motor with brake	J [x10 ⁻⁴ kgm ²]		1.6			
Motor feedback system			SZE / MZE			
Ratio	i[]	50	100	160		
Moment of Inertia output side						
Moment of inertia without brake	J _{out} [kgm²]	0.46	1.85	4.73		
Moment of inertia with brake	J _{out} [kgm²]	0.51	2.04	5.21		
Moment of Inertia at motor						
Moment of inertia at motor without brake	J [x10 ⁻⁴ kgm ²]		1.8			
Moment of inertia at motor with brake	J [x10 ⁻⁴ kgm ²]		2			
Motor feedback system			SIH / MIH			
Ratio	i[]	50	100	160		
Moment of Inertia output side						
Moment of inertia without brake	J _{out} [kgm²]	0.25	1.01	2.6		
Moment of inertia with brake	J _{out} [kgm²]	0.3	1.2	3.08		
Moment of Inertia at motor	Moment of Inertia at motor					
Moment of inertia at motor without brake	J [x10 ⁻⁴ kgm ²]		1			
Moment of inertia at motor with brake	J [x10 ⁻⁴ kgm²]		1.2			

Technical Data Motor Brake


Table 25.2


	Symbol [Unit]		BHA-20A-DB		
Ratio	i[]	50	100	160	
Brake voltage	U _{Br} [V _{DC}]	24 ± 10 %			
Brake holding torque (at output)	T _{Br} [Nm]	36	72	115	
Brake power consumption	P _{Br} [W]	9.5			
Brake current to open	I _{OBr} [A _{DC}]		0.4		
Number of brake cycles at n = 0 rpm			-		
Emergency brake cycles			-		
Opening time	t _o [ms]		-		
Closing time	t _c [ms]		-		

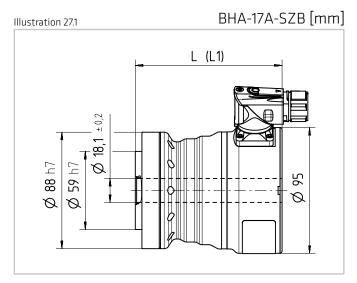


Performance Characteristics

The performance curves shown below are valid for the specified ambient operating temperature and the indicated motor terminal voltage $U_{\rm m}$.

Legend

Intermittent duty


Continuous duty

Motor terminal voltage $U_{M} = 34 \text{ VAC}$ Limit speed motor feedback

5.3 Dimensions

5.3.1 Size 17

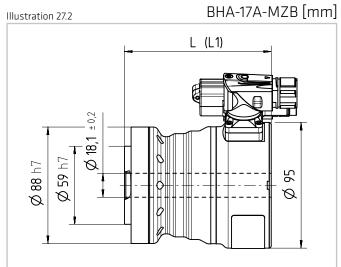
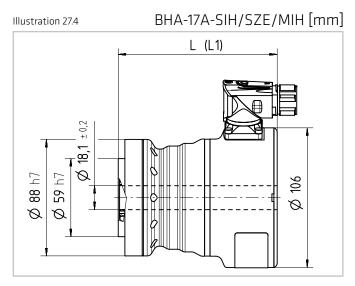



Table 27.3

	Symbol [Unit]	BHA-17A			
Motor feedback system		SZB	MZB		
Length (without brake)	L [mm]	111	111		
Length (with brake)	L1 [mm]	142	142		

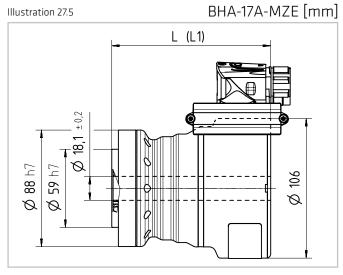
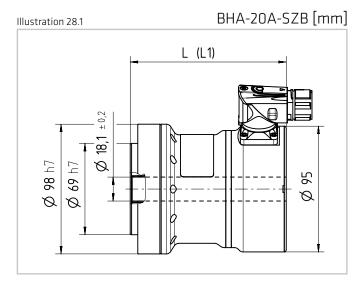


Table 27.6


	Symbol [Unit]	BHA-17A			
Motor feedback system		SIH/SZE/MIH	MZE		
Length (without brake)	L [mm]	120	120		
Length (with brake)	L1 [mm]	151	151		

The appropriate CAD drawings as 2D or 3D files can be provided on request. They are also available in our <u>CAD download portal</u> on our website.

5.3.2 Size 20

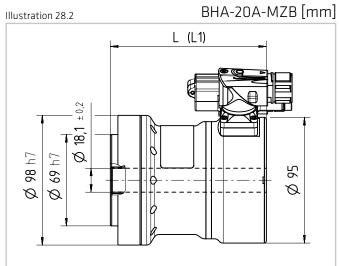
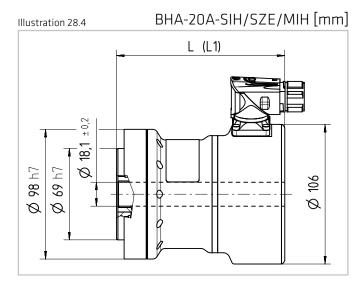



Table 28.3

	Symbol [Unit]	BHA-20A			
Motor feedback system		SZB	MZB		
Length (without brake)	L [mm]	118	118		
Length (with brake)	L1 [mm]	149	149		

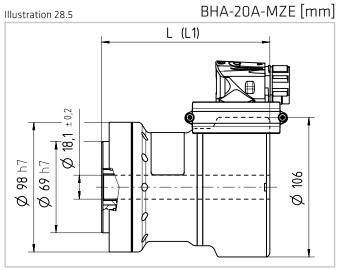


Table 28.6

	Symbol [Unit]	BHA-20A			
Motor feedback system		SIH / SZE / MIH	MZE		
Length (without brake)	L [mm]	127	127		
Length (with brake)	L1 [mm]	158	158		

The appropriate CAD drawings as 2D or 3D files can be provided on request. They are also available in our <u>CAD download portal</u> on our website.

5.4 Accuracy

Table 29.1

	Symbol [Unit]	ВНА-17А	BHA-20A
Ratio	i []	≥ 50	≥ 50
Transmission accuracy	[arcmin]	< 1.5	< 1
Repeatability	[arcmin]	< ±0.1	< ±0.1
Hysteresis loss	[arcmin]	<1	< 1
Lost Motion	[arcmin]	< 1	< 1

5.5 Torsional Stiffness

Table 29.2

	Symbol [Unit]	BHA-17A		BHA-20A	
Limit town	T₁[Nm]	3.9		7	
Limit torque	T ₂ [Nm]	12		25	
Ratio	i[]	50	> 50	50	> 50
	K ₃ [·10³ Nm/rad]	13	16	23	29
Torsional stiffness	K₂[·10³ Nm/rad]	11	14	18	25
	K ₁ [·10³ Nm/rad]	8.1	10	13	16

1044880 09/2020 V00

5.6 Bearings

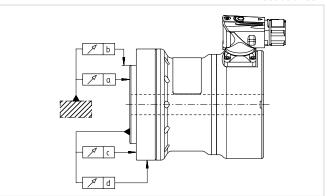
5.6.1 Output bearing

Our servo actuators incorporate a high stiffness output bearing. This specially developed bearing can withstand high axial forces and radial forces as well as tilting moments. The reduction gear thus protected from external loads, so guaranteeing a long life and consistent performance. The integration of an output bearing also serves to reduce subsequent design and production cost, by removing the need for an additionally output bearing in many applications.

5.6.2 Technical Data

Table 30.1

	Symbol [Unit]	ВНА-17А	BHA-20A
Bearing type ¹⁾		С	С
Pitch circle diameter	d _p [m]	0.059	0.07
Offset	R [m]	0.014	0.016
Dynamic load rating	C [N]	10700	21000
Static load rating	C ₀ [N]	14800	27000
Dynamic tilting moment ²⁾	M _{dyn (max)} [Nm]	114	172
Static tilting moment ³⁾	M _{0 (max)} [Nm]	276	603
Tilting moment stiffness ⁵⁾	K _B [Nm/arcmin]	40	70
Dynamic axial load ⁴⁾	F _{A dyn (max)} [N]	4600	15800
Dynamic radial load ⁴⁾	F _{R dyn (max)} [N]	2300	8600


¹⁾ C = Cross roller bearing, F = Four point contact bearing

 $M_0: F_a = 0 N; F_r = 0 N$

 F_a : $M_0 = 0$ Nm; $F_r = 0$ N F_r : $M_0 = 0$ Nm; $F_a = 0$ N

5) Average value

Illustration 30.2

5.6.3 Tolerances

Table 30.3

145.0 50.5			
	[Unit]	BHA-17A	BHA-20A
а	[mm]	0.01	0.01
b	[mm]	0.01	0.01
С	[mm]	0.01	0.01
d	[mm]	0.01	0.01

30 1044880 09/2020 VOO

²⁾ These values are valid for moving gears. They are not based on the equation for lifetime of the output bearing but on the maximum allowable deflection of the Harmonic Drive® Component Set. The values indicated in the table must not be exceeded even if the lifetime equation of the bearing permits higher values.

³⁾ These values are valid for gears at a standstill and for a static load safety factor f = 1.8

⁴⁾ These data are valid for n =15 rpm and L_{10} = 15000 h.

^{3,4)} These data are only valid if following conditions are fulfilled.

5.7 Motor feedback systems

5.7.1 Design and operation

For accurate position setting, the servo motor and its control device are fitted with a measuring device (feedback), which determines the current position (e.g. the angle of redation set for a starting position) of the motor.

This measurement is effected via a rotary encoder, e.g. a resolver, an incremental encoder or an absolute encoder. The position controller compares the signal from this encoder with the preset position value. If there is any deviation, then the motor is turned in the direction which represents a shorter path to the set value which leads to the deviation being reduced. The procedure repeats itself until the value lies incrementally or approximately within the tolerance limits. Alternatively, the motor position can also be digitally recorded and compared by computer to a set value.

Harmonic Drive® Servo Motors and Actuators use various motor feedback systems which are used as position transducers to fulfil several requirements.

Commutation

Commutation signals or absolute position values provide the necessary information about the rotor position, in order to guarantee correct commutation.

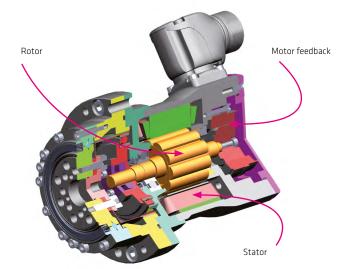
Actual speed

The actual speed is obtained in the servo controller using the feedback signal, from the cyclical change in position information.

Actual position

Incremental encoder

The actual signal value needed for setting the position is formed by adding up the incremental position changes. Where incremental encoders have square wave signals, definition of the edge evaluation can be quadrupled (quad counting). Where incremental encoders have SIN / COS signals, then the definition can be increased by interpolation in the control device.


Absolute encoders deliver absolute position information about one (single turn) or several (multi-turn) rotations. This information can on the one hand provide the rotor position for commutation and on the other hand possibly a reference of travel. Where absolute encoders have additional incremental signals, then typically the absolute position information can be read at power up and the incremental signals then evaluated to determine the rotation and actual position value. Fully digital absolute encoders as motor feedback systems have such a high definition of the absolute value that there is no need for additional incremental signals.

Resolution

In conjunction with the Harmonic Drive SE high precision gears, the output side position can be recorded via the motor feedback system without any additional angle encoders having to be used. The resolution of the motor feedback system can also be multiplied by gear ratio.

Output Side Angle Measurement Devices

Where applications place higher demands on accuracy or need torsion compensation at high torque load, the actual position can also be detected by an additional sensor mounted at the gearbox output side. The adaptation of an output side measurement system can be very simply realised for hollow shaft actuators.

5.7.2 Motor feedback system SZE

Single turn absolute motor feedback with EnDat® 2.2/22 interface

Table 32.1

	Symbol [Unit]	SZE				
Manufacturer's designation				ECI 119		
Protocol		EnDat® 2.2 /22				
Power supply ¹⁾	U₅ [VDC]	3.6 14				
Current consumption (typically at 5 VDC, without load) ¹⁾	I [mA]	75				
Current consumption buffering (bei 25 °C) ^{1) 2)}	Ι [μΑ]	-				
Incremental signals	t [s]	-				
Signal form	u _{pp} [V _{ss}]	-				
Number of pulses				-		
Absolute position / revolution (motor side) ³⁾	n ₁			524288 (19 bit)		
Number of revolutions				-		
Accuracy ¹⁾	[arcsec]			±90		
Resolution (motor side)	[arcsec]	2.47				
Ratio	i[]	50 80 100 120 160				160
Resolution absolute (output side)	[arcsec]	0.049	0.031	0.025	0.021	0.015
Number of revolutions (output side)		-	-	-	-	-

¹⁾ Source: Manufacturer

ADVICE

During initial operation, the commutation offset must be determined by the servo controller.

²⁾ Source: Manufacturer. Applies when the supply voltage is switched off at standstill.

³⁾ Increasing position values for rotation

⁻ clockwise direction of the motor shaft (view at motor shaft)

⁻ counter clockwise direction of the output flange (view at output flange)

5.7.3 Motor feedback system SIH

Single turn absolute motor feedback system with HIPERFACE® interface

Table 33.1

	Symbol [Unit]	SIH				
Manufacturer's designation				SES70		
Protocol		HIPERFACE®				
Power supply ¹⁾	U _b [VDC]			7 12		
Current consumption (typically at 7 VDC, without load) ¹⁾	I [mA]	150				
Power On time	t [s]			< 300		
Incremental signals	u _{pp} [V _{ss}]	1				
Signal form		sinusoidal				
Number of pulses	n ₁			32		
Incremental resolution at motor ²⁾	inc []			8192		
Absolute position / revolution (motor side) ³⁾				1024 (10 bit)		
Number of revolutions				-		
Available memory range	[Bytes]			2048		
Accuracy ¹⁾	[arcsec]			±100		
Ratio	i []	50 80 100 120 160				
Incremental resolution (output side) ²⁾	[arcsec]	3.16	1.98	1.58	1.32	0.99
Resolution absolute (output side)	[arcsec]	25.3	15.8	12.7	10.5	7.9
Number of revolutions (output side)		-	-	-	-	-

¹⁾ Source: Manufacturer

ADVICE

During initial operation, the commutation offset must be determined by the servo controller.

1044880 09/2020 V00

²⁾ For interpolation with 8 bit

³⁾ Increasing position values for rotation

⁻ clockwise direction of the motor shaft (view at motor shaft)

⁻ counter clockwise direction of the output flange (view at output flange)

5.7.4 Motor feedback system SZB

Single turn absolute motor feedback with BiSS-C interface

Table 34.1

	Symbol [Unit]	SZB				
Manufacturer's designation				FlexFeedback		
Protocol		BiSS-C				
Power supply	U _b [VDC]			5V ±10%		
Current consumption (without load)	I [mA]			85		
Current consumption buffering (at 25 °C)1)	Ι [μΑ]			-		
Power on time	t [s]	-				
Incremental signals	u _{pp} [V _{ss}]	-				
Signal form		-				
Number of pulses	n ₁			-		
Available memory	[Bytes]			1536		
BiSS Data word length				24		
Absolute position / revolution (motor side) ²⁾				65536 (16 bit)		
Number of revolutions				-		
Accuracy	[arcsec]	540				
Ratio	[i]	50 80 100 120 160				160
Resolution absolute (output side)	[arcsec]	0.4	0.2	0.2	0.2	0.1
Number of revolutions (output side)		-	-	-	-	-

¹⁾ Applies when the supply voltage is switched off at standstill.

Table 34.2

	Multi-turn	Single turn	Error ¹⁾	Warning ¹⁾	CRC
Layout BiSS Protocol	-	16 Bit	1 Bit	1 Bit	6 Bit

¹⁾ Error Bit and Warning Bit low active $\,$

ADVICE

During initial operation, the commutation offset must be determined by the servo controller.

²⁾ Increasing position values for rotation

⁻ clockwise direction of the motor shaft (view at motor shaft)

⁻ counter clockwise direction of the output flange (view at output flange)

5.7.5 Motor feedback system MZE

Multi-turn absolute motor feedback with EnDat® 2.2/22 interface

Table 35.1

	Symbol [Unit]	MZE							
Manufacturer's designation		EBI 135							
Protocol		EnDat® 2.2 / 22							
Power supply ¹⁾	U₀ [VDC]		3,6 14						
Current consumption (typically at 5V, without load) ¹⁾	I [mA]	75							
Current consumption buffering (at 25 °C) ^{1) 2)}	Ι [μΑ]	12							
Incremental signals	u _{pp} [V _{ss}]	-							
Signal form		-							
Number of pulses	n ₁	-							
Absolute position / revolution (motor side) ³⁾		524288 (19 bit)							
Number of revolutions		65536 (16 bit) battery buffered							
Buffer battery		Lithium thionyl chloride 3,6V / ≥ 2,0 Ah							
Typical battery lifetime ⁴⁾	[a]	10							
Recommended battery replacement interval	[a]	10							
Accuracy ¹⁾	[arcsec]	±90							
Resolution at motor	[arcsec]	2.47							
Ratio	i []	50	80	100	120	160			
Resolution absolute (output side)	[arcsec]	0.049	0.031	0.025	0.021	0.015			
Number of revolutions (output side)		1310	819	655	546	409			

¹⁾ Source: Manufacturer

ADVICE

During initial operation, the commutation offset must be determined by the servo controller.

1044880 09/2020 V00

²⁾ Source: Manufacturer. Applies when the supply voltage is switched off at standstill.

³⁾ Increasing position values for rotation

⁻ clockwise direction of the motor shaft (view at motor shaft)

⁻ counter clockwise direction of the output flange (view at output flange)

⁴⁾ Typical battery lifetime 10 h/day at normal operation. Battery temperature 25 °C and 1 %/a self discharge.

5.7.6 Motor feedback system MIH

Multi-turn absolute motor feedback system with HIPERFACE® interface

Table 36.1

	Symbol [Unit]	мін						
Manufacturer's designation		SEM70						
Protocol		HIPERFACE®						
Power supply ¹⁾	U _b [VDC]	7 12						
Current consumption (typically at 7 VDC, without load) ¹⁾	l [mA]	150						
Power on time	t [s]	< 300						
Incremental signals	$u_{pp}[V_{ss}]$	1						
Signal form		sinusoidal						
Number of pulses	n ₁	32						
Incremental resolution (motor side) ²⁾	inc []	8192						
Absolute position / revolution (motor side) ³⁾		1024 (10 bit)						
Number of revolutions		4096 (12 bit) mechanical multi-turn						
Available memory	[Bytes]	2048						
Accuracy ¹⁾	[arcsec]	±100						
Ratio	i []	50	80	100	120	160		
Incremental resolution (output side) ²⁾	[arcsec]	3.16	1.98	1.58	1.32	0.99		
Resolution absolute (output side)	[arcsec]	25.3	15.8	12.7	10.5	7.9		
Number of revolutions (output side)		82	51	41	34	26		

¹⁾ Source: Manufacturer

ADVICE

During initial operation, the commutation offset must be determined by the servo controller.

²⁾ For interpolation with 8 bit

³⁾ Increasing position values for rotation

⁻ clockwise direction of the motor shaft (view at motor shaft) $\,$

⁻ counter clockwise direction of the output flange (view at output flange)

Multi-turn absolute motor feedback with BiSS-C interface

Table 37.1

	Symbol [Unit]			MZB						
Manufacturer's designation		FlexFeedback								
Protocol		BiSS-C								
Power supply	U _b [VDC]			5V ±10%						
Current consumption (without load)	I [mA]			85						
Current consumption buffering (at 25 °C) ¹⁾	Ι [μΑ]			15						
Power on time	t [s]			-						
Incremental signals	u _{pp} [V _{ss}]	-								
Signal form		-								
Number of pulses	n ₁	-								
BiSS Data word length		40								
Absolute position / Revolution (motor side) ²⁾		65536 (16 bit)								
Number of revolutions		65536 (16 bit) battery buffered								
Buffer battery		Lithium thionyl chloride 3.6 V / ≥ 2 Ah								
Typical battery lifetime ³⁾	[a]			16						
Recommended battery exchange interval	[a]	10 15								
Available memory	[Bytes]	1536								
Accuracy	[arcsec]	540								
Ratio	i[]	50 80 100 120 16								
Resolution absolute (output side)	[arcsec]	0.4	0.2	0.2	0.2	0.1				
Number of revolutions (output side)		1310	819	655	546	409				

¹⁾ Applies when the supply voltage is switched off at standstill.

Table 37.2

	Multi-turn	Single turn	Error ¹⁾	Warning ¹⁾	CRC
Layout BiSS Protocol	16 Bit	16 Bit	1 Bit	1 Bit	6 Bit

¹⁾ Error Bit and Warning Bit low active

ADVICE

During initial operation, the commutation offset must be determined by the servo controller.

1044880 09/2020 V00 37

²⁾ Increasing position values for rotation

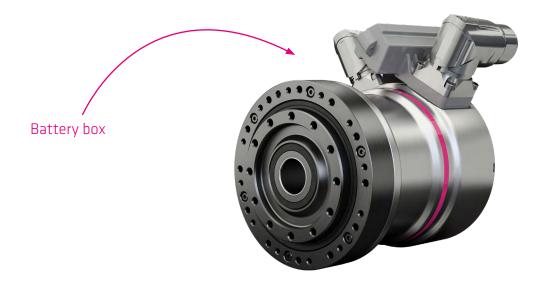
⁻ counter clockwise direction of the motor shaft (view at motor shaft)

⁻ clockwise direction of the output flange (view at output flange)

⁴⁾ Typical battery lifetime 10 h/day at normal operation. Battery temperature 25 $^{\circ}$ C and 1 $^{\circ}$ C as elf discharge.

5.8 Temperature sensors

For motor protection at speeds greater than zero, temperature sensors are integrated in the motor windings. For applications with high load where the speed is zero, additional protection (e.g. I² t monitoring) is recommended.


Table 38.1

Sensor type	Quantity	Parameter	Symbol [Unit]	Limit				
				Warning	Switch-off			
PT 1000	1	Temperature	T [°C]	105	115			

5.9 Battery box

5.9.1 Battery box for multi-turn absolute motor feedback system MZE and MZB

The battery box is an accessory to operate the multi-turn absolute motor feedback systems MZE and MZB. It is used to buffer the position data when the power supply is switched off.

Replacing the battery

The following preconditions must be ensured in order to maintain the absolute encoder function when replacing the battery:

ADVICE

- The supply voltage of the motor feedback system is provided by the drive controller
- The motor feedback system is connected to the drive controller

⚠ ATTENTION

In case of failure or interruption of the battery voltage and simultaneous failure or interruption of the power supply, the reported position after restarting will be wrong!

Undefined positioning can cause injury to persons or damage to the system.

- Open the cover of the battery box
- Remove old battery
- Insert new battery
- Close the cover of the battery box
- Rest error and warning bit
- Dispose the old battery according to the applicable regulations

Illustration 39.1

Illustration 39.2

ADVICE

Recommended battery: Lithium thionyl chloride

3,6 V / ≥ 2,0 Ah / AA Tadiran SL-360S

Reset error bit and warning bit

The MZB and MZE motor feedback systems monitor the connected battery and provide, in addition to the position values, also an error bit and a warning bit, which are transmitted via the interface. The warning bit is set when the battery voltage reaches the critical value during operation. After the warning "Battery change" has occurred, the battery must be replaced immediately. The error message is set with simultaneous failure or interruption of the battery voltage and the voltage supply. Error bit and warning bit are reset via the reset input.

5.10 Electrical connections

5.10.1 BHA-xxA-LA-SZE/MZE

Motor connection

Table 40.1

Motor connector	8 / M23 x 1
Design	rotatable ± 110°
Version	SpeedTec

Illustration 40.2

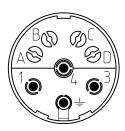


Table 40.3

Connector pin	1	2	3	4	A	В	С	D
Motor phase	U	PE	W	V	BR+	BR-	Temp+	Temp-

Encoder connection

Table 40.4

Encoder connector	17 / M23 x 1
Design	rotatable ± 110°
Version	SpeedTec

Illustration 40.5

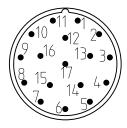


Table 40.6

Connector pin	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Signal	-	-	Data+	-	Clock+	-	GND	-	-	Up	-	-	Data-	Clock-	-	-	-

5.10.2BHA-xxA-LA-SZB/MZB

Motor connection

Table 41.1

Motor connector	8 / M23 x 1
Design	rotatable ± 110°
Version	SpeedTec

Illustration 41.2

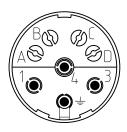


Table 41.3

Connector pin	1	2	3	4	А	В	С	D
Motor phase	U	PE	W	V	BR+	BR-	Temp+	Temp-

Encoder connection

Table 41.4

Encoder connector	17 / M23 x 1
Design	rotatable ± 110°
Version	SpeedTec

Illustration 41.5

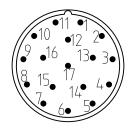


Table 41.6

Connector pin	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Signal	-	-	Data+	-	Clock+	-	GND	-	-	Up	-	-	Data-	Clock-	-	-	-

1044880 09/2020 V00 41

5.10.3 BHA-xxA-LA-SIH/MIH

Motor connection

Table 42.1

Motor connector	8 / M23 x 1
Design	rotatable ± 110°
Version	SpeedTec

Illustration 42.2

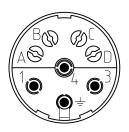


Table 42.3

Connector pin	1	2	3	4	А	В	С	D
Motor phase	U	PE	W	V	BR+	BR-	Temp+	Temp-

Encoder connection

Table 42.4

Encoder connector	12 / M23 x 1
Design	rotatable ± 110°
Version	SpeedTec

Illustration 42.5

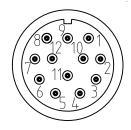
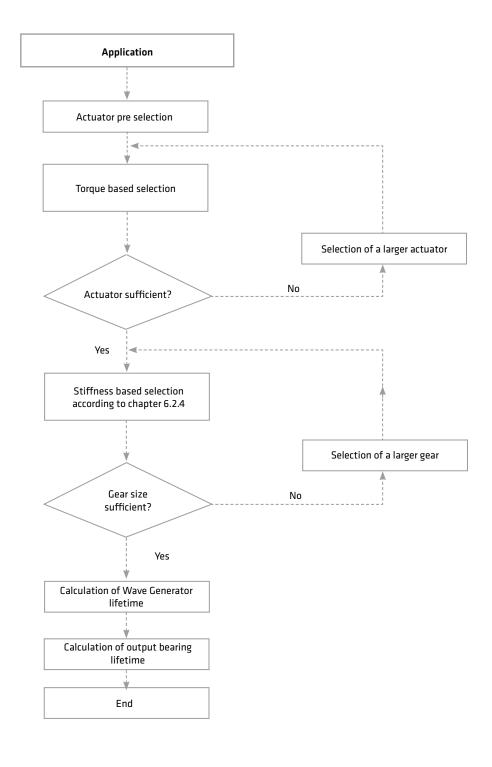


Table 42.6

Connector pin	1	2	3	4	5	6	7	8	9	10	11	12
Signal	Us	GND	SIN+	REFSIN	Data+	Data-	Cos+	REFCOS	-	-	-	-


6. Selection Procedure

6.1 Selection Procedure Servo Actuators

In principle, both torque and stiffness requirements should be taken into account in the design. Whereas, for example, in robotics applications, the required torques are more decisive for the gear size, the torsional stiffness necessary for the process is often decisive in machine tool construction. In addition, both the service life and the static safety should be calculated for the output bearings. We therefore recommend that the design is carried out according to the following diagram.

ADVICE

We will be pleased to make a gear calculation and selection on your behalf. Please contact our Sales engineers.

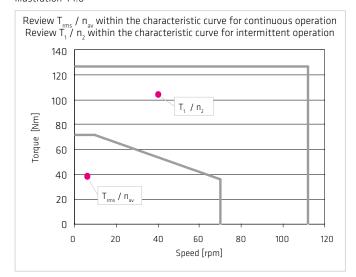
6.2 Actuator dimensioning

6.2.1 Torque based dimensioning

Checking the permissible loads

Application output data		
Torque (Stage 1 n)	T ₁ T _n	[Nm]
Load time (Stage 1 n)	t ₁ t _n	[s]
Operating cycle	t _o	[s]
Break time	t _p	[s]
Load torque (e. g. friction)	T _L	[Nm]
Load speed	n ₂	[min ⁻¹]
Load moment of inertia	$J_{\scriptscriptstyle L}$	[kgm²]
Required lifetime Wave Generator bearing	L _{10erf.}	[h]

Permissible load of the gear		
Maximum torque	T_{max}	[Nm]
Maximum speed	n _{max}	[min ⁻¹]
Moment of inertia	$J_{ m out}$	[kgm²]


Equation 44.2

Preselection of the servo actuator based on the load data $\begin{array}{c} n_2 \leq n_{max} \\ J_L \leq K \cdot J_{out} \\ K \leq 3 \text{ for dynamic applications} \\ K > 3 \ldots \leq 10 \text{ for less dynamic applications} \end{array}$

Equation 44.4

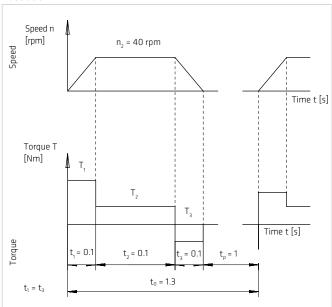


Illustration 44.6

Equation 44.10

Illustration 44.1

Equation 44.3

Validation of the speed cycle using the load curve and preselection of the servo actuator

Equation 44.5

Calculation of the acceleration torque $T_{_1} = T_{_L} + \frac{2\pi}{60} \cdot \frac{(J_{_{out}} + J_{_L}) \cdot n_{_2}}{t_{_1}}$ Note: For servo actuators the input moment of inertia must also be taken into consideration!

Equation 44.7

Calculation of the effective torque $T_{rms} = -\frac{2}{\sqrt{\frac{T_1^2 \cdot t_1 + T_2^2 \cdot t_2 + \dots T_n^2 \cdot t_n}{t_1 + t_2 + \dots t_n + t_p}}}$

Equation 44.8

Calculation of the average speed $n_{av} = \frac{|n_1| \cdot t_1 + |n_2| \cdot t_2 + ... |n_n| \cdot t_n}{t_1 + t_2 + ... t_n + t_p}$

Equation 44.9

Calculation of the duty cycle $ED = \frac{t_1 + t_2 + \dots t_n}{t_1 + t_2 + \dots t_n + t_p} \cdot 100 \%$

Equation 44.11

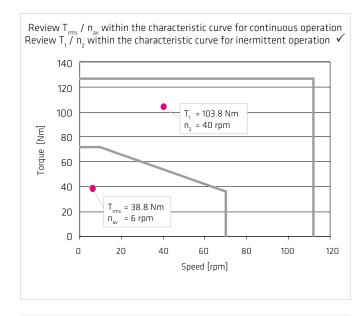
Validation the lifetime of the Wave Generator ball bearing according to chapter 6.2.2

Calculation example

The torque based dimensioning should be based on a reference cycle which represents a typical load on the gear including acceleration and deceleration phases.

Арј	plicat	tion load da	ata						
J _L	=	1,3 kgm²	t _o	=	1,3	S	n _p	=	0,2 s
t ₁	=	0,1 s	L _{10erf.}	=	7000	S	Κ	≤	3
t ₂	=	0,1 s	n ₁	=	3	S	T_{L}	=	5 Nm
t ₃	=	0,1 s	n ₂	=	0,4	S			
t _p	=	1,0 s	n ₃	=	0,15	S			

Permissible load of the actuator			
Preselected actuator	CanisDri	ve-2!	5A-50
Maximum torque	T _{max}	=	127 Nm
Maximum speed	n _{max}	=	112 rpm
Moment of inertia	Jout	=	127 kgm²


Preselection of the servo actuator based on the load data

$$n_2$$
 = 40 rpm $\leq n_{max}$ = 112 rpm \checkmark
 J_L = 1,3 kgm² \leq 3 · J_{out} = 1.063 kgm² \checkmark
K \leq 3 for dynamic applications

Validation of the speed cycle using the load curve

Checking the permissible maximum torque
$$T_1 = 103.8 \text{ Nm} \le T_{\text{max}} = 127 \text{ Nm}$$

Calculation of the acceleration torque
$$T_{_1}=5+\frac{2\pi}{60}\cdot\frac{(1.3+1.06)\cdot 40}{0.1}=103.8\;Nm$$
 Note: For servo actuators the input moment of inertia must also be taken into consideration!

Calculation of the effective torque
$$T_{2} = T_{L} = 5 \text{ Nm}$$

$$T_{3} = T_{L} - (T_{1} - T_{L}) = -93.8 \text{ Nm}$$

$$T_{ms} = \sqrt{\frac{103.8^{2} \cdot 0.1 + 5^{2} \cdot 0.1 + (-93.8)^{2} \cdot 0.1}{1.3}} = 38.8 \text{ Nm}$$

Calculation of the average speed
$$n_{av} = \frac{|20| \cdot 0.1 + |40| \cdot 0.1 + |20| \cdot 0.1}{1.3} = 6 \text{ rpm}$$

Calculation of the duty cycle

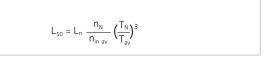
$$ED = \frac{0.1 + 0.1 + 0.1}{1.3} \cdot 100\% = 23\%$$

Checking the lifetime of the Wave Generator ball bearing

$$L_{10} = 18211 \text{ h} > L_{erf.} = 7000 \text{ h}$$

Validation the lifetime of the Wave Generator ball bearing

$$L_{10} = \frac{1}{5} \cdot \frac{2000}{300} \cdot \left(\frac{51}{78.6}\right) = 18211 \text{ h}$$

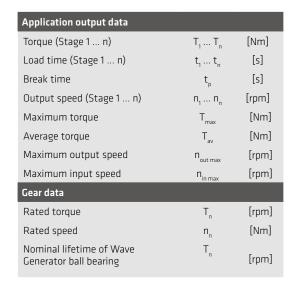


6.2.2 Lifetime of the Wave Generator ball bearing

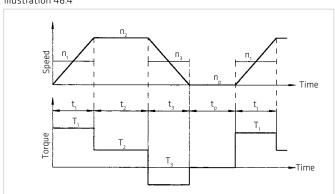
The lifetime calculation of gears and servo actuators based on the strain wave gear principle refers to the lifetime of the Wave Generator ball bearing. The nominal torques at nominal speed given in the performance data tables are based on the nominal life L_n of the Wave Generator ball bearing.

The expected life can be determined at a given average input speed $n_{in av}$ and given average output torque T_{av} using equation 46.1. The lifetime L_{so} indicates the calculated lifetime at 50% failure probability, L_{to} at 10% failure probability.

Equation 46.1


Equation 46.2

$$L_{10} \approx \frac{1}{5} \cdot L_{50}$$


Table 46.3

Harmonic Drive® Series	Nominal lifetime L _n [h]	Rated speed n _N [rpm]
CobaltLine, CSG, SHG, CanisDrive®, BHA	50000	2000
HFUC, HFUS, CPL, CSD, CPU, CSF-Mini, SHD, CHA, CHA-C, FHA-C, FHA-C Mini, LynxDrive, BDA-HFUC, RSF-Mini	35000	2000
PMG-5, PMA-5	15000	4500
PMG-8 14, PMA-8 14	15000	3500

The average output speed can be calculated with equation 46.5 and the average input speed can be calculated with Equation 46.6.

Illustration 46.4

Equation 46.5

$$T_{av} = -\frac{3}{\sqrt{\frac{\left| n_1 \cdot T_1^3 \right| \cdot t_1 + \left| n_2 \cdot T_2^3 \right| \cdot t_2 + ... + \left| n_n \cdot T_n^3 \right| \cdot t_n}{\left| n_1 \right| \cdot t_1 + \left| n_2 \right| \cdot t_2 + ... + \left| n_n \right| \cdot t_n}}$$

Equation 46.6

$$n_{\text{out av}} = \frac{|n_1| \cdot t_1 + |n_2| \cdot t_2 + \dots + |n_n| \cdot t_n}{t_1 + t_2 + \dots + t_n + t_p}$$

Equation 46.7

$$n_{in av} = i \cdot n_{out av}$$

6.2.3 Calculation of the torsion angle

The torsion angle of the gear or servo actuator under load can be calculated as follows:

Equation 47.1

$$T \leq T_1$$

$$\varphi = \frac{T}{K_1}$$

T = Torque [Nm]

T₁ = Limit torque 1, from chapter "Torsional Stiffness" [Nm]

T₂ = Limit torque 2, from chapter "Torsional Stiffness" [Nm]

 I_2 = Limit torque Z, from chapter "Torsional Stiffness [Nm] K_1 = Torsional stiffness until limit torque T_1 , from chapter "Torsional Stiffness" [Nm/rad] K_2 = Torsional stiffness until limit torque T_2 , from chapter "Torsional Stiffness" [Nm/rad] K_3 = Torsional stiffness above limit torque T_2 , from chapter "Torsional Stiffness" [Nm/rad]

Equation 47.2

$$T_1 < T \le T_2$$

$$\varphi = \frac{T_1}{K_1} + \frac{T - T_1}{K_2}$$

Equation 47.3

$$T > T_2$$

$$\phi = \frac{T_1}{K_1} + \frac{T_2 - T_1}{K_2} + \frac{T - T_2}{K_3}$$

Example: Component Set CSG-32-100-2A-GR

Application data: T = 60 Nm

Gear parameters:

 $K_1 = 67 \cdot 10^3 \text{ Nm/rad}$

 $T_1 = 29 \text{ Nm}$ $T_{2}^{'} = 108 \text{ Nm}$

 $K_{2} = 110 \cdot 10^{3} \text{ Nm/rad}$ $K_{3} = 120 \cdot 10^{3} \text{ Nm/rad}$

$$\phi = \frac{29 \text{ Nm}}{67 \cdot 10^{3} \text{ Nm/rad}} + \frac{60 \text{ Nm} - 29 \text{ Nm}}{110 \cdot 10^{3} \text{ Nm/rad}}$$

$$\phi = 2.5 \text{ arcmin}$$

$$\phi = 7.15 \cdot 10^{-4} \text{ rad}$$

Equation 47.4

$$\varphi$$
 [arcmin] = φ [rad] $\cdot \frac{180 \cdot 60}{\pi}$

6.2.4 Stiffness based dimensioning

Recommended minimum resonance frequencies

In addition to the selection scheme "Torque based dimensioning" we recommend to perform a stiffness based dimensioning. For this purpose, the characteristic values given in table 48.1 should be considered for the minimum resonance frequencies recommended for the specific application. Basically, the higher the requirement for a low vibration movement and the higher the movement dynamics, the higher the recommended minimum resonance frequencies.

Table 48.1

Application	Unit	f _n
Slowly rotating turntables, base axes of slow moving welding robots (not laser welding), slowly rotating welding and swinging tables, gantry robot axes	[Hz]	≥ 4
Base axes of revolute robots, hand axes of revolute robots with low requirements regarding dynamic performance, tool revolvers, tool magazines, swivelling and positioning axes in medical and measuring devices	[Hz]	≥ 8
Standard applications in general mechanical engineering, tilting axes, palette changers, highly dynamic tool changers, -revolvers and -magazines, hand axes of revolute robots, scara robots, gantry robots, polishing robots, dynamic welding inverters, base axes of welding robots (laser welding), swivelling and positioning axes of medical equipment	[Hz]	≥ 15
B / C axes in 5 axis grinding machines, welding robot hand axes (laser welding), milling heads for plastics processing	[Hz]	≥ 20
C axes in turning machines, milling heads light metal machining, milling heads wood machining (chipboards etc.)	[Hz]	≥ 25
Milling heads woodworking (hardwood etc.)	[Hz]	≥ 30
C axes in turning machines*	[Hz]	≥ 35
Milling heads for metal machining*, B axes in turning milling centres for metal machining	[Hz]	≥ 40
Milling heads for metalworking*, B axes in turning milling centres for metalworking with high demands on surface quality*	[Hz]	≥ 50
Milling heads for metalworking with very high demands on the surface quality*	[Hz]	≥ 60

^{*} Depending on the application, a secondary gear stage can be useful. We recommend consultation with Harmonic Drive SE.

Calculation of the resonance characteristics

Resonance frequency (Gear output)

Equation 49.1 can be used to calculate the output side resonance frequency for a given torsional stiffness K_1 of the Harmonic Drive[®] Gear and the moment of inertia of the load.

Equation 49.1

$$f_n = \frac{1}{2\pi} \sqrt{\frac{K_1}{J}} [Hz]$$

f_n = Resonance frequency [Hz]
K₁ = Torsional stiffness gear K₁ [Nm/rad]
J = Moment of inertia of the load [kgm²]

The calculated frequency should be higher than the value given in equation 49.1. As the moment of inertia of the load increases, the influence of the application on the design result also increases. If the moment of inertia = 0, the selected application has no calculated influence on the design result.

Resonance speed (Gear input)

The resonance speed n_a at input side (motor side) can be calculated with equation 49.2.

Equation 49.2

$$n_n = f_n \cdot 30 \text{ [rpm]}$$

We recommend to pass the resonance speed during operation quickly. This can be achieved by selecting a suitable gear reduction. Another possibility is to select a suitable gear stiffness so that the resonance speed is outside the required speed range.

Calculation example

CSG-40-120-2A-GR preselected according to "Selection Procedure: Torque based dimensioning".

Planned application: Milling head woodworking

Moment of inertia output side: 7 kgm²

Recommended minimum resonance frequency, Table .1": ≥ 30 Hz

Calculated resonance frequency of the preselected gear

CSG-40-120-2A-GR:
$$f_n = \frac{1}{2\pi} \cdot \sqrt{\frac{1.3 \cdot 10^5}{7}} = 22 \text{ Hz}$$

According to stiffness based design, this size is too small for the application.

With the larger gear CSG-50-120-2A-GR the following calculated resonance frequency results:

$$f_n = \frac{1}{2\pi} \cdot \sqrt{\frac{2.5 \cdot 10^5}{7}} = 30 \text{ Hz}$$

Due to the rigidity based selection, the CSG-50-120-2A-GR gear is recommended.

The resonance speed at the input (motor) is

$$n_n = 30 \cdot 30 = 900 \text{ rpm}$$

This speed should be passed through rapidly during acceleration and braking or should be set outside the used speed range.

6.3 Dimensioning output bearing

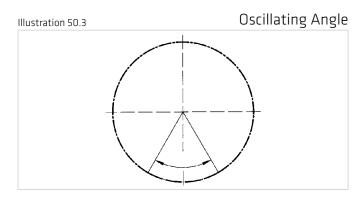
6.3.1 Life for continuous operation

The operating life of the output bearing can be calculated using equation 50.1.

Equation 50.1

$$L_{10} = \frac{10^6}{60 \cdot n_{av}} \cdot \left(\frac{C}{f_w \cdot P_C} \right)^B$$

= Bearing type exponent (table 51.3)

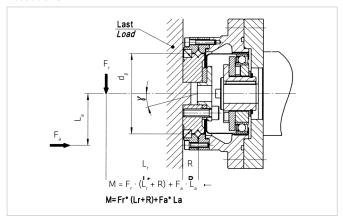

6.3.2 Life for oscillating motion

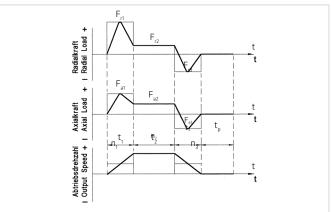
The operating life at oscillating motion can be calculated using equation 50.2.

Equation 50.2

$$L_{OC} = \frac{10^6}{60 \cdot n_1} \cdot \frac{180}{\varphi} \cdot \left(\frac{C}{f_w \cdot P_C}\right)^B$$

At oscillating angles < 5° fretting corrosion may occur due to insufficient lubrication. in this case please contact our <u>sales engineer</u> for countermeasures. Bearing type of the selected product see "technical data of the output bearing".




6.3.3 Dynamic equivalent load

With a dynamic bearing load, the load cycle of the output bearing must be converted into the dynamic equivalent load and the average output speed to calculate the service life.

Illustration 51.1

Illustration 51.2

Dynamic equivalent load

Equation 51.3

$$P_C = x \cdot \left(F_{rav} + \frac{2M}{dp}\right) + y \cdot F_{aav}$$

Equation 51.4

$$F_{rav} = \left(\frac{\left| n_1 \right| \cdot t_1 \cdot (\left| F_{r1} \right|)^8 + \left| n_2 \right| \cdot t_2 \cdot (\left| F_{r2} \right|)^8 + \ldots + \left| n_n \right| \cdot t_n \cdot (\left| F_{rn} \right|)^8}{\left| n_1 \right| \cdot t_1 + \left| n_2 \right| \cdot t_2 + \ldots + \left| n_n \right| \cdot t_n} \right)^{1/B}$$

Equation 51.5

$$F_{aav} = \left(-\frac{\left| n_1 \right| \cdot t_1 \cdot \left(\left| F_{a1} \right| \right)^\beta + \left| n_2 \right| \cdot t_2 \cdot \left(\left| F_{a2} \right| \right)^\beta + \ldots + \left| n_n \right| \cdot t_n \cdot \left(\left| F_{an} \right| \right)^\beta}{\left| n_1 \right| \cdot t_1 + \left| n_2 \right| \cdot t_2 + \ldots + \left| n_n \right| \cdot t_n} \right)^{1/\beta}$$

P_c [N] Dynamic equivalent load

$F_{rav}[N]$ Average radial load

$$F_{aav}[N] = Average axial load$$

$$F_{rn}[N]$$
 = Radial force of stage n

$$F_{an}[N] = Axial force of stage n$$

$$n_n[rpm] = Speed of stage n$$

$$t_n[s]$$
 = Time of stage n

Pitch circle diameter of the roller d₀ [m]

Tabelle 51.6

Condition	x	У
$\frac{F_{aav}}{F_{rav} + 2 \cdot M / d_p} \le 1.5$	1	0.45
$\frac{F_{aav}}{F_{rav} + 2 \cdot M / d_p} > 1.5$	0.67	0.67

1044880 09/2020

Average output speed

Equation 52.1

$$n_{\mathsf{av}} = \frac{ \quad \left| n_1 \right| \cdot t_1 + t_2 + \ldots + \left| n_n \right| \cdot t_n}{t_1 + t_2 + \ldots + t_n + t_p}$$

Operating factor

Tabelle 52.2

Load conditions	Operating factor f _w
No vibrations and impacts	11.2
Normal load	1.2 1.5
Impacts and/or vibrations	1.5 3

Bearing type exponent

Table 52.3

Bearing type	Bearing type exponent
Cross roller bearing	10/3
Four point bearing	3

6.3.4 Permissible static bearing load

In case of a static load on the output bearing, the static safety factor is calculated using the following equation. The chapter "Output Bearings, Technical Data" contains data for the permissible static tilting moment with a purely static tilting moment (without additional axial and radial force).

Equation 53.1

$$f_S = \frac{C_0}{P_0}$$
 with $P_0 = x_0 \left(F_r + \frac{2M}{d_p} \right) + y_0 \cdot F_a$

f_s = Static load safety factor

 C_0 = Static load rating

 $x_0 = 1$, Static radial force factor

 $y_0 = 0.44$, Static axial force factor

P_o = Static equivalent load

d_p = Pitch circle diameter of the output bearing roller track

M = Static tilting moment

Table 53.2

Operating conditions of the bearing	Recommendation of the static load safety factor $\mathbf{f_s}$
Normal	~1.5
Vibrations / Impacts	~ 2
High transmission accuracy	~ 3

6.3.5 Angle of tilt

The angle of tilt of the output flange as a function of the tilting moment acting on the output bearing, can be calculated by means of equation 53.4:

Equation 53.4

$$\gamma = \frac{M}{K_B}$$

 γ [arcmin] = Angle of inclination of the output flange M [Nm] = Tilting moment acting on the output bearing K_B [Nm/arcmin] = Moment stiffness of the output bearing

7. Design Guidelines

7.1 Notes on design integration

We recommend the following fit selection for structural design:

Table 54.1

	Unit	BHA-17A	BHA-20A
Load side			
Fit of bearing inner ring	[mm]	59 h7	69 h7
Recommended tolerance area	[mm]	H7	H7
Housing side			
Fit of bearing outer ring	[mm]	88 h7	98 h7
Recommended tolerance area	[mm]	H7	H7

7.2 Protection against corrosion and penetration of liquids and debris

The product achieves the degree of protection according to the table "Technical Data" when the connectors are suitable for the mentioned degree of protection and the ambient conditions (condensation, liquids and gases) do not cause corrosion on the running surfaces of the radial shaft seals. Special versions can deviate from the above protection class.

Sharp edged or abrasive parts (cutting chips, splinters, dust from metal, minerals, etc.) must not come into contact with radial shaft seals.

A liquid film permanently standing on the radial shaft seal must be prevented. As a result of changing operating temperatures, pressure differences occur in the actuator, which lead to suction of the liquid standing on the shaft seal.

An additional customer side shaft seal or a sealing air connection must be provided if a liquid film permanently standing on the shaft seal cannot be prevented. An enclosure or a sealing air connection must be provided if oil mist, for example, is to be expected constantly in the vicinity of the actuator.

Sealing air specification: constant overpressure in the actuator; the supplied air must be dried and filtered, overpressure max. 10⁴ Pa.

1044880 09/2020 V00 55

8. Installation and Operation

8.1 Transport and Storage

The transportation of the servo actuators and motors should always be in the original packaging.

If the servo actuators and motors are not put into operation immediately after delivery, they should be stored in a dry, dust and vibration free environment. Storage should be for no longer than 2 years at room temperatures (between +5 °C ... +40 °C) so that the grease life is preserved.

INFO

Tensile forces in the connecting cable must be avoided.

ADVICE

Lithium metal batteries are dangerous goods according to UN 3090. Therefore they are generally subject to transport regulations, depending on the transport mode.

The batteries installed in the motor feedback systems do not contain more than 1 g of lithium or lithium alloy and are exempt from dangerous goods regulations.

8.2 Installation

Check the performance and protection and check the suitability of the conditions at the installation site. Take suitable constructive measures to ensure that no liquid (water, drilling emulsion, coolant) can penetrate the output bearing or encoder housing.

ADVICE

The installation must be protected against impact and pressure on the gear.

The mounting must be such that heat loss can be adequately dissipated.

No radial forces and axial forces may act to the protection sleeve of the hollow shaft actuator.

During installation, the actuator must be fitted ensuring the machine housing can be rotated without terminals. Already low terminals may affect the accuracy of the gear and, should this be the case, the installation of the machine housing should be checked.

8.3 Mechanical Installation

The data necessary for mounting the actuator and for connecting to the load are given in the following table.

Table 57.1

Tubic 57.1			
	Unit	BHA-17A	BHA-20A
Load assembly			
Number of screws		12	12
Screw size		M4	M4
Screw quality		12.9	12.9
Pitch circle diameter	[mm]	52	62
Screw tightening torque	[Nm]	5.1	5.1
Transmittable torque	[Nm]	188	228
Housing assembly			
Number of screws		12	12
Screw size		МЗ	M3
Screw quality		12.9	12.9
Pitch circle diameter	[mm]	80	89
Screw tightening torque	[Nm]	2.3	2.3
Transmittable torque	[Nm]	158	177

Data valid for completely degreased connecting interfaces (friction coefficient μ = 0.15).

1044880 09/2020 V00 57

The screws must be secured against loosening.

The threads of the load attachment must be sealed.

It is recommended to use LOCTITE 243 to secure the screws.

8.4 Electrical Installation

All work should be carried out with power off.

Electric servo actuators and motors have dangerous live and rotating parts. All work during connection, operation, repair and disposal must be carried out only by qualified personnel as described in the standards EN 50110-1 and IEC 60364!

Before starting any work, and especially before opening covers, the actuator must be properly isolated. In addition to the main circuits,

the user also has to pay attention to any auxilliary circuits.

Observing the five safety rules:

- Disconnect mains
- Prevent reconnection
- Test for absence of harmful voltages
- Ground and short circuit
- Cover or close off nearby live parts

The measures taken above must only be withdrawn when the work has been completed and the device is fully assembled. Improper handling can cause damage to persons and property. The respective national, local and factory specific regulations must be adhered to.

Due to the fact that the motor contains permanent magnets, a voltage is generated at the motor terminals when the rotor is turned.

ADVICE

- The connecting cables must be adapted to the ambient conditions, current intensities, the occurring voltages and mechanical requirements.
- The protective earth must be connected to the terminal marked PE.
- All cables used should be provided with a shield and in addition, the encoder cable should feature twisted pair leads.
- The power supply is switched off before connecting and disconnecting the power connection and signal connections.
- Observe EMC-compliant cable routing. Signal lines and power lines must be routed separately.
- Note equipotential bonding.
- When mounting the drives on moving parts, an additional equipotential bonding conductor (≥ 10 mm²) as close as possible to the servo actuator is recommended.

ADVICE

Encoders and sensors contain electrostatically sensitive components, observe the ESD measures!

8.5 Commissioning

ADVICE

Commissioning must be executed in accordance with the documentation of Harmonic Drive SE.

Before commissioning, please check that:

- The actuator is properly mounted
- · All electrical connections and mechanical connections are designed according to requirements
- The protective earth is properly connected
- All attachments (brakes, etc.) are operational
- Appropriate measures have been taken to prevent contact with moving and live parts
- \bullet The maximum speed $n_{_{\mbox{\scriptsize max}}}$ is specified and cannot be exceeded
- The set up of the drive parameters has been executed
- The commutation is adjusted correctly

⚠ ATTENTION

Check the direction of rotation of the load uncoupled. Any existing loose parts must be removed or secured.

In the event of changes in the normal operating behaviour, such as increased temperature, noise or vibration, switch the actuator off. Determine the cause of the problem and contact the manufacturer if necessary. Even if the actuator is only on test, do not put safety equipment out of operation.

This list may not be complete. Other checks may also be necessary.

ADVICE

Due to heat generation from the actuator itself, tests outside the final mounting position should be limited to 5 minutes of continuous running at a motor speed of less than 1000 rpm. These values should not be exceeded in order to avoid thermal damage to the actuator.

For actuators with 4BNo2 lubricant, a running-in process is recommended under the following conditions:

Load: without load

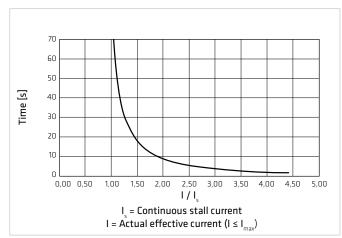
Gear input speed: 1000 rpm

Time: 15 - 20 min

During the running-in process, the drive temperature must be monitored to prevent damage from overheating.

8.6 Overload Protection

To protect the servo actuators and motors from temperature overload sensors are integrated into the motor windings.


The temperature sensors alone do not guarantee motor protection. Protection against overload of the motor winding is only possible with an input speed > 0. For special applications (eg. load at standstill or very low speed) is an additional overload protection by limiting the overload period.

The built specification of the integrated temperature sensors can be found in the technical data.

In addition, it is recommended to protect the motor winding against overload by the use of I^2t monitoring integrated in

the controller. The graph shows an example of the overload characteristic for the I²t monitoring. The overload factor is the ratio between the actual RMS current and continuous stall current.

Illustration 59.1 Overload characteristics

8.7 Shutdown and Maintenance

In case of malfunctions or maintenance measures, or to shutdown the motors, proceed as follows:

- 1. Follow the instructions in the machine documentation.
- 2. Bring the actuator on the machine to a controlled standstill.
- 3. Turn off the power and the control voltage on the controller.
- 4. For motors with a fan unit; turn off the motor protection switch for the fan unit.
- 5. Turn off the mains switch of the machine.
- 6. Secure the machine against accidental movement and against unauthorised operation.
- 7. Wait for the discharge of electrical systems then disconnect all the electrical connections.
- 8. Secure the motor, and possibly the fan unit, before disassembly against falling or movement then pay attention to the mechanical connections.

Risk of death by electric voltages.

Work in the area of live parts is extremely dangerous.

- Work on the electrical system may only be performed by qualified electricians. The use of a power tool is absolutely necessary.
- · Observing the five safety rules:
 - 1. Unlock
 - 2. secure against being switched on again
 - 3. determine freedom from voltage
 - 4. ground and short-circuit
 - 5. cover or cordon off adjacent live parts
- Before starting work check with a suitable measuring instrument if there are any parts under residual voltage. (e.g. capacitors, etc.). Wait until the residual voltage is within a save range.

The measures taken above must only be withdrawn when the work has been completed and the device is fully assembled. Improper handling can cause damage to persons and property. The respective national, local and factory specific regulations must be adhered to.

Burns from hot surfaces with temperatures of over 100 °C

Let the motors cool down before starting work. Cooling times of up to 140 minutes may be necessary.

Wear protective gloves.

Do not work on hot surfaces!

⚠ WARNING

Persons and property during maintenance and operation

Never perform maintenance work on running machinery. Secure the system during maintenance against re-starting and unauthorised operation.

8.7.1 Cleaning

Excessive dirt, dust or chips may adversely affect the operation of the actuator and can, in extreme cases, lead to failure. At regular intervals (latest after one year) you should therefore, clean the actuator to ensure a sufficient dissipation of the surface heat.

Insufficient heat radiation can have undesirable consequences.

- The bearing life is reduced by operation at inadmissibly high temperatures (bearing grease decomposes).
- Overtemperature shutdown despite operation after selection data, because the corresponding cooling is missing.

8.7.2 Check the electrical connections

Lethal electric shock by touching live parts!

In any case of defects of the cable sheath the system must be shut down immediately and the damaged cable should be replaced. Do not make any temporary repairs on the connection cables.

- Connection cord should be periodically checked for damage and replaced if necessary.
- Check optionally installed power chains for defects.
- Protective conductor connections should be in a good condition and tightness checked at regular intervals. Replace if necessary.

8.7.3 Check the mechanical fastenings

The fastening screws and the load of the housing must be checked regularly.

8.7.4 Maintenance intervals for battery buffered motor feedback systems

ADVICE

Please note the information on battery life time in the chapter "Motor Feedback Systems"!

1044880 09/2020 V00 61

9. Decommissioning and Disposal

Harmonic Drive® Products contain lubricants for bearings and gears as well as electronic components and printed circuit boards. Depending on the used motor feedback system the actuator can also include a lithium thionyl chloride battery. It is required to dispose the product correctly in accordance to the national and local regulations.

Lubricants and batteries must be handled in accordance with national health and safety regulations. If required, please request the valid safety data sheet for the lubricant from us.

ADVICE

- Batteries do not contain hazardous materials according to EC directives 91/157/EEC, 93/86/EEC, and 2011/65/EU (RoHS directive)
- EC battery directive 2006/66/EC has been implemented by most EC member states,
- According to the EU Battery Directive, Lithium batteries are marked with the symbol of the crossedout wheeled bin (see figure). The symbol reminds the end user that batteries are not permitted to be disposed of with household waste, but must be collected separately.
- A disposal service is offered upon request by Harmonic Drive SE.

10. Glossary

10.1 Technical Data

AC Voltage constant k_{EM} [V_{rms} / 1000 rpm]

Effective value of the induced motor voltage measured at the motor terminals at a speed of 1000 rpm and an operating temperature of 20 °C.

Ambient operating temperature [°C]

Specifies the temperature range permitted for normal operation.

Average input speed (grease lubrication) n_{av (max)} [rpm]

Maximum permissible average gear input speed for grease lubrication. The applications average input speed must be lower than the permitted average input speed of the gear.

Average input speed (oil lubrication) n_{av (max)} [rpm]

Maximum permissible average gear input speed for oil lubrication. The applications average input speed must be lower than the permitted average input speed of the gear.

Average torque T_a [Nm]

When a variable load is applied to the gear, an average torque should be calculated for the complete operating cycle. This value should not exceed the specified T_{Δ} limit.

Backlash (Harmonic Planetary Gears) [arcmin]

When subjected to the rated torque, Harmonic Planetary Gears display characteristics shown in the hysteresis curve. When a torque is applied to the output shaft of the gear with the input shaft locked, the torque-torsion relationship can be measured at the output. Starting from point 0 the graph follows successive points A-B-A'-B'-A where the value B-B' is defined as the backlash or hysteresis.

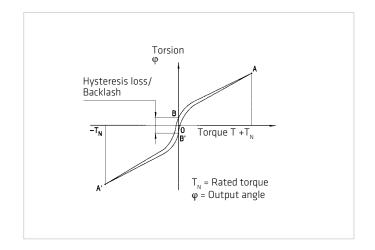
Brake closing time t_c [ms]

Delay time to close the brake.

Brake current to hold $I_{\mu p_r}[A_{nc}]$

Current for applying the brake.

Brake current to open $I_{OBr}[A_{DC}]$


Current required to open the brake.

Brake holding torque T_{RD} [Nm]

Torque the actuator can withstand when the brake is applied, with respect to the output.

Brake opening time t_o [ms]

Delay time for opening the brake.

Brake voltage U_{Br} [VDC]

Supply voltage of the holding brake.

Continuous stall current I₀ [A_{rms}]

Effective value of the motor phase current to produce the stall torque.

Continuous stall torque T_o [Nm]

Allowable actuator stall torque.

Demagnetisation current I_E [A_{rms}]

Current at which rotor magnets start to demagnetise.

Dynamic axial load F_{A dyn (max)} [N]

With the bearing rotating, this is the maximum allowable axial load with no additional radial forces or tilting moments applied.

Dynamic load rating C [N]

Maximum dynamic load that can be absorbed by the output bearing before permanent damage may occur.

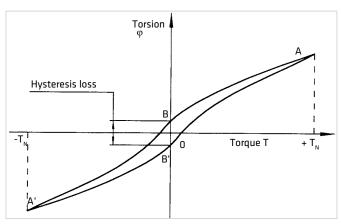
Dynamic radial load F_{R dyn (max)} [N]

With the bearing rotating, this is the maximum allowable radial load with no additional axial forces or tilting moments applied.

Dynamic tilting moment M_{dyn (max)} [Nm]

With the bearing rotating, this is the maximum allowable tilting moment with no additional axial forces or radial forces applied. This value is not based on the equation for lifetime calculation of the output bearing but on the maximum allowable deflection of the Harmonic Drive® Component Set. This value must not be exceeded even if the lifetime calculation of the bearing permits higher values.

Electrical time constant τ_{α} [s]


The electrical time constant is the time required for the current to reach 63 % of its final value.

Hollow shaft diameter du [mm]

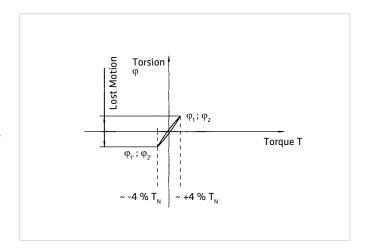
Free inner diameter of the axial hollow shaft.

Hysteresis loss (Harmonic Drive® Gears)

When a torque is applied to the output of a Harmonic Drive® Gear with the input locked, the torque-torsion relationship measured at the output typically follows, starting from point O, the successive points the hysteresis curve A-B-A'-B'-A (see figure). The value of the displacement B-B' is defined as the hysteresis loss.

 $T_N = Rated output torque$ ϕ = Output rotation angle

VOO


Inductance (L-L) L_{...} [mH]

Terminal inductance calculated without taking into account the magnetic saturation of the active motor parts.

Lost Motion (Harmonic Drive® Gears) [arcmin]

Harmonic Drive® Gears exhibit zero backlash in the teeth. Lost motion is the term used to characterise the torsional stiffness in the low torque region.

The illustration shows the angle of rotation ϕ measured against the applied output torque as a hysteresis curve with the Wave Generator locked. The lost motion measurement of the gear is taken with an output torque of about ± 4 % of the rated torque.

Maximum current I_{max} [A]

The maximum current is the maximum current that can be applied for a short period.

Maximum DC bus voltage U_{DC (max)} [VDC]

The maximum DC bus power supply for the correct operation of the actuator. This value may only be exceeded for a short period during the braking or deceleration phase.

Maximum hollow shaft diameter $d_{H (max)}$ [mm]

For gears with a hollow shaft, this value is the maximum possible diameter of the axial hollow shaft.

Maximum input speed (grease lubrication) n_{in (max)} [rpm]

Maximum allowable input speed with grease lubrication for short period. The maximum input speed can be applied as often as desired, as long as the application's average speed is lower than the permitted average input speed of the gear.

Maximum input speed (oil lubrication) n_{in (max)} [rpm]

Maximum allowable input speed for gearing with oil lubrication for short period. The maximum input speed can be applied as often as desired, as long as the application's average speed is lower than the permitted average input speed of the gear.

Maximum motor speed n_{max} [rpm]

The maximum allowable motor speed.

Maximum output speed n_{max} [rpm]

The maximum output speed. Due to heating issues, this may only be momentarily applied during the operating cycle. The maximum output speed can occur any number of times as long as the calculated average speed is within the permissible continuous operation duty cycle.

Maximum output torque T_{max} [Nm]

Specifies the maximum allowable acceleration and deceleration torques. For highly dynamic processes, this is the maximum torque available for a short period. The maximum torque can be parameterised by the control unit where the maximum current can be limited. The maximum torque can be applied as often as desired, as long as the calculated average torque is within the permissible continuous operation duty cycle.

Maximum power P_{max} [W]

Maximum power output.

VOO

Mechanical time constant τ_m [s]

The mechanical time constant is the time required to reach 63 % of its maximum rated speed in a no-load condition.

Momentary peak torque T_M [Nm]

In the event of an emergency stop or collision, the Harmonic Drive® Gear may be subjected to a brief momentary peak torque. The magnitude and frequency of this peak torque should be kept to a minimum and under no circumstances should the momentary peak torque occur during the normal operating cycle. The allowable number of momentary peak torque events can be calculated with the equations given in chapter "selection procedure".

Moment of inertia J [kgm²]

Mass moment of inertia at motor side.

Moment of inertia J_{in} [kgm²]

Mass moment of inertia of the gear with respect to the input.

Moment of inertia J_{out} [kgm²]

Mass moment of inertia with respect to the output.

Motor terminal voltage (Fundamental wave only) U_{M} $[V_{rms}]$

Required fundamental wave voltage to achieve the specified performance. Additional power losses can lead to restriction of the maximum achievable speed.

Nominal Service Life L_a [h]

When loaded with rated torque and running at rated speed the Wave Generator Bearing will reach the nominal service life L_n with 50% probability of failure. For different load conditions the service life of the Wave Generator Bearing can be calculated using the equations in chapter "selection procedure".

Number of pole pairs p

Number of magnetic pole pairs on the rotor of the motor.

Offset R [m or mm]

Distance between output bearing centre and point of application of load.

Pitch circle diameter d_n [m] or [mm]

Pitch circle diameter of the output bearing rolling element raceway.

Protection class IP

The degree of protection according to EN 60034-5 provides suitability for various environmental conditions.

Rated current I_N [A]

RMS value of the sinusoidal current when driven at rated torque and rated speed.

Rated motor speed n_N [rpm]

The motor speed which can be continuously maintained when driven at rated torque T_N , when mounted on a suitably dimensioned heat sink.

Rated power P_N [W]

Output power at rated speed and rated torque.

66 1044880 09/2020

Rated speed n_N [rpm]

The output speed which can be continuously maintained when driven at rated torque T_N , when mounted on a suitably dimensioned heat sink.

Rated speed n_N [rpm], Mechanical

The rated speed is a reference speed for the calculation of the gear life. When loaded with rated torque and running at rated speed the Wave Generator Bearing will reach the nominal service life L_N with 50 % probability of failure. The rated speed n_N is not used for the dimensioning of the gear.

Product series	n _N
CobaltLine, HFUC, HFUS, CSF, CSG, CSD, SHG, SHD, CPL	2000 rpm
PMG size 5	4500 rpm
PMG size 8 to 14	3500 rpm
HPG, HPGP, HPN	3000 rpm

Rated torque T_N [Nm]

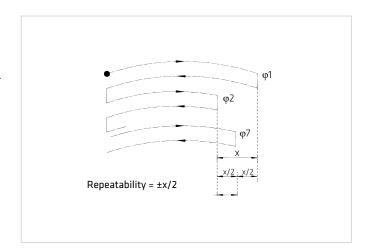
The output torque which can be continuously transmitted when driven at rated input speed, when mounted on a suitably dimensioned heat sink.

Rated torque T_N [Nm], Mechanical

The rated torque is a reference torque for the calculation of the gear life. When loaded with rated torque and running at rated speed the Wave Generator Bearing will reach the nominal service life L_n with 50 % probability of failure. The rated torque T_N is not used for the dimensioning of the gear.

Rated voltage U_N [V_{rms}]

Supply voltage for operation with rated torque and rated speed. Indicated is the effective value of the Line Voltage.


Ratio i []

The ratio is the reduction of input speed to the output speed.

Note for Harmonic Drive® Gears: In the standard drive arrangement, the Wave Generator is the drive element while the Flexspline is the driven element and the Circular Spline is fixed to the housing. Since the direction of rotation of the input (Wave Generator) is opposite to the output (Flexspline), a negative ratio must be considered.

Repeatability [arcmin]

The repeatability of the gear describes the position difference measured during repeated movement to the same desired position from the same direction. The repeatability is defined as half the value of the maximum difference measured, preceded by a \pm sign.

Repeated peak torque T_D [Nm]

Specifies the maximum allowable acceleration and deceleration torque. During the normal operating cycle the repeatable peak torque T_R must not be exceeded. The repeated peak torque can be applied as often as desired, as long as the application's average torque is lower than the permitted average torque of the gear.

Resistance (L-L, 20 °C) $R_{LL}[\Omega]$

Winding resistance measured between two conductors at a winding temperature of 20 °C.

Size

The frame size is derived from the pitch circle diameter of the gear teeth in inches multiplied by 10.

Static load rating C_n [N]

Maximum static load that can be absorbed by the output bearing before permanent damage may occur.

Static tilting moment M_n [Nm]

With the bearing stationary, this is the maximum allowable radial load with no additional axial forces or tilting moments applied.

Synchronous inductance L_d [mH]

Sum of air gap inductance and leakage inductance in relation to the single-phase equivalent circuit diagram of the synchronous motor.

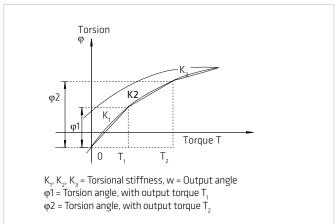
Tilting moment stiffness K_R [Nm/arcmin]

The ratio of the tilting angle of the output bearing and the applied moment load.

Torque constant (motor) $k_{TM} [Nm/A_{rms}]$

Quotient of stall torque and stall current.

Torque constant (output) k_{Tout} [Nm/A_{rms}]

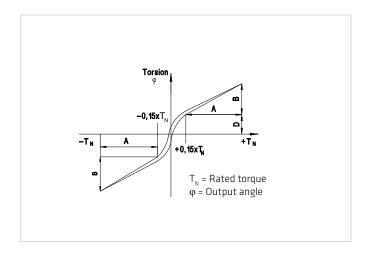

Quotient of stall torque and stall current, taking into account the transmission losses.

Torsional stiffness (Harmonic Drive® Gears) K₁, K₂, K₃ [Nm/rad]

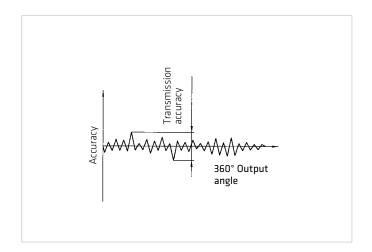
The degree of elastic rotation at the output for a given torque with the Wave Generator blocked. The torsional stiffness may be evaluated by dividing the torque-torsion curve into three regions. The torsional stiffness values K_1 , K_2 and K_3 are determined by linearization of the curve.

 $\begin{array}{lll} K_1: & low torque \ region & 0 \sim T_1 \\ K_2: & middle \ torque \ region & T_1 \sim T_2 \\ K_3: & high \ torque \ region & > T_3 \end{array}$

The values given for the torsional stiffness K_1 , K_2 and K_3 are average values that have been determined during numerous tests. The limit torques T_1 and T_2 and an calculation example for the torsional angle can be found in chapter "torsional stiffness" and "calculation of the torsion angle" of this documentation.


68

Vnn


Torsional stiffness (Harmonic Planetary Gears) K3 [Nm/rad]

The degree of elastic rotation at the output for a given torque and blocked input shaft. The torsional rigidity of the Harmonic Planetary Gear describes the rotation of the gear above a reference torque of 15 % of the rated torque. In this area the torsional stiffness is almost linear.

Transmission accuracy [arcmin]

The transmission accuracy of the gear represents the linearity error between input and output angle. The transmission accuracy is measured for one complete output revolution using a high resolution measurement system. The measurements are carried out without direction reversal. The transmission accuracy is defined as the sum of the maximum positive and negative differences between the theoretical and actual output rotation angles.

Weight m [kg]

The weight specified in the catalogue is the net weight without packing and only applies to standard versions.

10.2 Labelling, Guidelines and Regulations

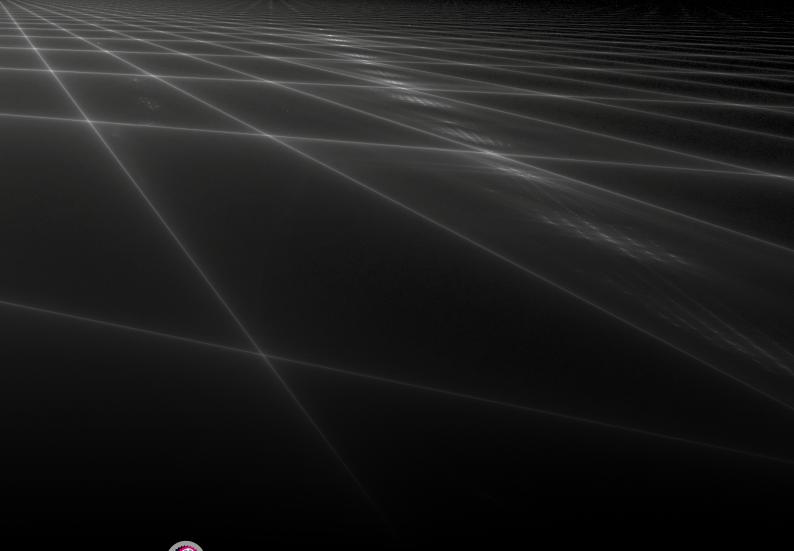
CE-Marking

With the CE marking, the manufacturer or EU importer declares in accordance with EU regulation, that the product meets the applicable requirements of the EU harmonization legislation.

REACH Verordnung Nr. 1907/2006

REACH Regulation

REACH is a European Community Regulation on chemicals. REACH stands for Registration, Evaluation, Authorization and Restriction of Chemicals.


RoHS EU Directive

The RoHS EU Directive on the restriction of the use of certain hazardous substances in electrical and electronic equipment.

70

V00

PASSION GENERATES THE HIGHEST QUALITY.

Harmonic Drive SE

Hoenbergstraße 14 65555 Limburg/Lahn Germany

T +49 6431 5008-0 info@harmonicdrive.co.uk www.harmonicdrive.co.uk

We reserve the right to make technical changes and modifications without prior notice.