Projektierungsanleitung
Einbausätze CPL-2A

Weitere Informationen zu unseren Units, Getriebeboxen und Planetengetriebe finden Sie HIER!

Kontaktieren Sie uns noch heute!
Inhalt

1. Allgemeines ... 04
 1.1 Erläuterung der verwendeten Symbolik .. 05
 1.2 Haftungsausschluss und Copyright .. 05

2. Sicherheits- und Inbetriebnahmehinweise .. 06
 2.1 Gefahren ..06
 2.2 Bestimmungsgemäße Verwendung ..07
 2.3 Nicht bestimmungsgemäße Verwendung ..07
 2.4 Konformitätserklärung ... 08

3. Technische Beschreibung ... 09
 3.1 Produktbeschreibung ... 09
 3.2 Bestellbezeichnung .. 09
 3.3 Technische Daten .. 10
 3.3.1 Allgemeine Technische Daten ...10
 3.3.2 Abmessungen ... 11
 3.3.3 Minimaler Gehäuseabstand .. 13
 3.3.4 Genauigkeit ..14
 3.3.5 Torsionssteifigkeit ...14

4. Antriebsauslegung ... 15
 4.1 Auslegung von Harmonic Drive® Getrieben ... 17
 4.1.1 Drehmomentbasierte Auslegung .. 18
 4.1.2 Lebensdauer des Wave Generator Kugellagers ... 20
 4.1.3 Steifigkeitsbasierte Auslegung ... 21
 4.2 Berechnung des Torsionswinkels ... 23
 4.3 Lastabhängiger Wirkungsgrad .. 24
 4.3.1 Wirkungsgradberechnung ..24
 4.3.2 Wirkungsgradtabellen ... 25
 4.4 Lastfreie Drehmomente ... 28
 4.4.1 Lastfreies Laufdrehmoment ..28
 4.4.2 Lastfreies Anlaufdrehmoment ... 29
 4.4.3 Lastfreies Rückdrehmoment .. 29
 4.5 Schmierung .. 30
 4.5.1 Fettschmierung .. 30
 4.5.2 Ölschmierung ... 32
 4.6 Axialkräfte am Wave Generator ... 33
5. **Installation und Betrieb** ... 34
 5.1 Transport und Lagerung... 34
 5.2 Anlieferungszustand... 34
 5.3 Montagehinweise.. 35
 5.4 Montagetoleranzen... 39
 5.5 Friction Shim .. 40
 5.6 Schmierung... 40
 5.6.1 Fettschmierung... 41
 5.6.2 Fettreservoir... 43
 5.6.3 Fettwechsel... 43
 5.6.4 Ölschmierung... 44
 5.7 Vorbereitung... 45
 5.8 Montage.. 46
 5.8.1 Montage des Circular Splines (CS).................................. 47
 5.8.2 Montage des FlexSplines (FS).. 47
 5.8.3 Montage des Wave Generators auf die Antriebswelle.... 48
 5.8.4 Prüfung vor dem Fügen des Wave Generators.............. 48
 5.8.5 Fügen des Wave Generators in den Flexspline............. 48
 5.8.6 Überprüfung der Montage... 48
6. **Außerbetriebnahme und Entsorgung** .. 49
7. **Glossar** ... 49
 7.1 Technische Daten... 49
 7.2 Kennzeichnung, Richtlinien und Verordnungen....................... 56
1. Allgemeines

Über diese Dokumentation
Die vorliegende Dokumentation beinhaltet Sicherheitsvorschriften, technische Daten und Betriebsvorschriften für Produkte der Harmonic Drive AG.

Die Dokumentation wendet sich an Planer, Projekteure, Maschinenhersteller und Inbetriebnehmer. Sie unterstützt bei Auswahl und Berechnung der Servoantriebe und Servomotoren sowie des Zubehörs.

 Hinweise zur Aufbewahrung
Bitte bewahren Sie diese Dokumentation während der gesamten Einsatz- bzw. Lebensdauer bis zur Entsorgung des Produktes auf. Geben Sie bei Verkauf diese Dokumentation weiter.

Weiterführende Dokumentation

www.harmonicdrive.de

Fremdsysteme
Dokumentationen für externe, mit Harmonic Drive® Komponenten verbundene Systeme sind nicht Bestandteil des Lieferumfangs und müssen von diesen Herstellern direkt angefordert werden.

Vor der Inbetriebnahme der Servoantriebe und Servomotoren der Harmonic Drive AG an Regelgeräten ist die spezifische Inbetriebnahmedokumentation des jeweiligen Gerätes zu beachten.

Ihr Feedback
Ihre Erfahrungen sind für uns wichtig. Verbesserungsvorschläge und Anmerkungen zu Produkt und Dokumentation senden Sie bitte an:

Harmonic Drive AG
Marketing und Kommunikation
Hoenbergstraße 14
65555 Limburg / Lahn
E-Mail: info@harmonicdrive.de
1.1 Erläuterung der verwendeten Symbolik

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bezeichnet eine unmittelbar drohende Gefahr. Wenn sie nicht gemieden wird, sind Tod oder schwerste Verletzungen die Folge.</td>
</tr>
<tr>
<td></td>
<td>Bezeichnet eine möglicherweise drohende Gefahr. Wenn sie nicht gemieden wird, können Tod oder schwerste Verletzungen die Folge sein.</td>
</tr>
<tr>
<td></td>
<td>Bezeichnet eine möglicherweise drohende Gefahr. Wenn sie nicht gemieden wird, können leichte oder geringfügige Verletzungen die Folge sein.</td>
</tr>
<tr>
<td></td>
<td>Bezeichnet eine möglicherweise schädliche Situation. Wenn sie nicht gemieden wird, kann die Anlage oder etwas in ihrer Umgebung beschädigt werden.</td>
</tr>
<tr>
<td></td>
<td>Dies ist kein Sicherheitsymbol. Das Symbol weist auf wichtige Informationen hin.</td>
</tr>
</tbody>
</table>

- Bewahren Sie die Warnung vor einer Gefahr (allgemein). Die Art der Gefahr wird durch den nebenstehenden Warntext spezifiziert.
- Warnung vor gefährlicher elektrischer Spannung und deren Wirkung.
- Warnung vor heißer Oberfläche.
- Warnung vor hängenden Lasten.
- Vorsichtsmaßnahmen bei der Handhabung elektrostatisch empfindlicher Bauelemente beachten.

1.2 Haftungsausschluss und Copyright

2. Sicherheits- und Inbetriebnahmehinweise

2.1 Gefahren

Elektrische Servoantriebe und Motoren haben gefährliche, spannungsführende und rotierende Teile. Alle Arbeiten während dem Anschluss, der Inbetriebnahme, der Instandsetzung und der Entsorgung sind nur von qualifiziertem Fachpersonal auszuführen. EN 50110-1 und IEC 60364 beachten!

Vor Beginn jeder Arbeit, besonders aber vor dem Öffnen von Abdeckungen, muss der Antrieb vorschriftsmäßig freigeschaltet sein. Neben den Hauptstromkreisen ist dabei auch auf eventuell vorhandene Hilfsstromkreise zu achten.

Einhalten der fünf Sicherheitsregeln:
• Freischalten
• Gegen Wiedereinschalten sichern
• Spannungsfreiheit feststellen
• Erden und kurzschließen
• Benachbarte unter Spannung stehende Teile abdecken oder abschranken

Betriebsbedingt auftretende elektrische, magnetische und elektromagnetische Felder stellen im Besonderen für Personen mit Herzschrittmachern, Implantaten oder ähnlichem eine Gefährdung dar. Gefährdete Personengruppen dürfen sich daher nicht in unmittelbarer Nähe des Produktes aufhalten.

Eingebaute Haltebremsen sind nicht funktional sicher. Insbesondere bei hängender Last kann die funktionale Sicherheit nur mit einer zusätzlichen externen mechanischen Bremse erreicht werden.

Der einwandfreie und sichere Betrieb der Produkte setzt einen sachgemäßen Transport, fachgerechte Lagerung, Aufstellung und Montage sowie eine sorgfältige Bedienung und Wartung voraus.

Die Oberflächentemperatur der Antriebe kann im Betrieb über 55 °C betragen! Die heißen Oberflächen dürfen nicht berührt werden!
2.2 Bestimmungsgemäße Verwendung

Harmonic Drive® Produkte sind für industrielle oder gewerbliche Anwendungen bestimmt. Falls im Sonderfall, beim Einsatz in nicht industriellen oder nicht gewerblichen Anlagen, erhöhte Anforderungen gestellt werden, so sind diese Bedingungen bei der Aufstellung anlagenseitig zu gewährleisten.

Typische Anwendungsbereiche sind Robotik und Handhabung, Werkzeugmaschinen, Verpackungs- und Lebensmittelmaschinen und ähnliche Maschinen.

Die Produkte dürfen nur innerhalb der in der Dokumentation angegebenen Betriebsbereiche und Umweltbedingungen (Aufstellungshöhe, Schutzart, Temperaturbereich usw.) betrieben werden.

Vor Inbetriebnahme von Anlagen und Maschinen, in welche Harmonic Drive® Produkte eingebaut werden, ist die Konformität der Anlage oder Maschine zur Maschinenrichtlinie herzustellen.

2.3 Nicht bestimmungsgemäße Verwendung

Die Verwendung der Produkte außerhalb der vorgenannten Anwendungsbereiche oder unter anderen als in der Dokumentation beschriebenen Betriebsbereichen und Umweltbedingungen gilt als nicht bestimmungsgemäßer Betrieb.

Nachfolgende Anwendungsbereiche gehören zur nicht bestimmungsgemäßen Verwendung:

- Luft- und Raumfahrt
- Explosionsgefährdete Bereiche
- Speziell für eine nukleare Verwendung konstruierte oder eingesetzte Maschinen, deren Ausfall zu einer Emission von Radioaktivität führen kann
- Vakuum
- Geräte für den häuslichen Gebrauch
- Medizinische Geräte, die in direkten Kontakt mit dem menschlichen Körper kommen
- Maschinen oder Geräte zum Transport und Heben von Personen
- Spezielle Einrichtungen für die Verwendung auf Jahrmärkten und in Vergnügungsparks

HINWEIS

Bewegen und heben Sie Produkte mit einem Gewicht >20 kg ausschließlich mit dafür geeigneten Hebevorrichtungen.

HINWEIS

Anschlusskabel dürfen nicht in direkten Kontakt mit heißen Oberflächen kommen.

INFO

2.4 Konformitätserklärung

Im Sinne der EG-Maschinenrichtlinie 2006/42/EG sind die Harmonic Drive® Getriebe keine unvollständigen Maschinen sondern Maschinenkomponenten, die nicht in den Geltungsbereich der EG-Maschinenrichtlinie fallen.

3. Technische Beschreibung
3.1 Produktbeschreibung

Die Leichtbau-Baureihe

Die Einbausätze der Baureihe CPL-2A sind erhältlich in fünf Baugrößen mit den Untersetzungen 30 bis 160 bei einem wiederholbaren Spitzendrehmoment zwischen 18 und 372 Nm und einer Leistungsdichte von 340 bis 735 Nm/kg und bieten geringste Massenträgheitsmomente.

3.2 Bestellbezeichnungen

Tabelle 9.1

<table>
<thead>
<tr>
<th>Baureihe</th>
<th>Baugröße</th>
<th>Untersetzungen</th>
<th>Version</th>
<th>Sonderausführung</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPL</td>
<td>14A</td>
<td>30 50 80 100</td>
<td></td>
<td>2A</td>
</tr>
<tr>
<td></td>
<td>17A</td>
<td>30 50 80 100 120</td>
<td></td>
<td>Nach Kundenanforderung</td>
</tr>
<tr>
<td></td>
<td>20A</td>
<td>30 50 80 100 120 160</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25A</td>
<td>30 50 80 100 120 160</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32A</td>
<td>30 50 80 100 120 160</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bestellbezeichnung

CPL - 25A - 100 - 2A - SP

Tabelle 9.2

<table>
<thead>
<tr>
<th>Version</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2A</td>
<td>Einbausatz</td>
</tr>
</tbody>
</table>

Erläuterungen zu den technischen Daten finden Sie im Kapitel „Glossar“.
3.3 Technische Daten

3.3.1 Allgemeine technische Daten

Tabelle 10.1

<table>
<thead>
<tr>
<th>Einheit</th>
<th>CPL-14-2A</th>
<th>CPL-17-2A</th>
<th>CPL-20-2A</th>
<th>CPL-25-2A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untersetzung</td>
<td>30 50 80 100</td>
<td>30 50 80 100</td>
<td>30 50 80 100</td>
<td>30 50 80 100</td>
</tr>
<tr>
<td>Wiederholbares Spitzendrehmoment</td>
<td>9 18 23 28</td>
<td>16 34 43 54</td>
<td>12 26 27 39</td>
<td>12 26 27 39</td>
</tr>
<tr>
<td>Durchschnittsdrehmoment</td>
<td>6.8 6.9 11 11</td>
<td>12 26 27 39</td>
<td>12 26 27 39</td>
<td>12 26 27 39</td>
</tr>
<tr>
<td>Nenndrehmoment</td>
<td>4.0 5.4 7.8 7.8</td>
<td>8.8 16 22 24</td>
<td>8.8 16 22 24</td>
<td>8.8 16 22 24</td>
</tr>
<tr>
<td>Kollisionsdrehmoment</td>
<td>17 35 47 54</td>
<td>30 70 87 110</td>
<td>30 70 87 110</td>
<td>30 70 87 110</td>
</tr>
<tr>
<td>Max. Antriebsdrehzahl (Ölschmierung)</td>
<td>n_{in,max} [min⁻¹]</td>
<td>14000</td>
<td>10000</td>
<td>10000</td>
</tr>
<tr>
<td>Max. Antriebsdrehzahl (Fettschmierung)</td>
<td>n_{in,max} [min⁻¹]</td>
<td>8500</td>
<td>7300</td>
<td>7300</td>
</tr>
<tr>
<td>Mittlere Antriebsdrehzahl (Ölschmierung)</td>
<td>n_{in,[max]} [min⁻¹]</td>
<td>6500</td>
<td>6500</td>
<td>6500</td>
</tr>
<tr>
<td>Mittlere Antriebsdrehzahl (Fettschmierung)</td>
<td>n_{in,[max]} [min⁻¹]</td>
<td>3500</td>
<td>3500</td>
<td>3500</td>
</tr>
<tr>
<td>Massenträgheitsmoment</td>
<td>I_{jin} [x10⁻⁴ kgm²]</td>
<td>0.020</td>
<td>0.049</td>
<td>0.020</td>
</tr>
<tr>
<td>Gewicht</td>
<td>m [kg]</td>
<td>0.055</td>
<td>0.10</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Tabelle 10.2

<table>
<thead>
<tr>
<th>Einheit</th>
<th>CPL-20-2A</th>
<th>CPL-25-2A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untersetzung</td>
<td>30 50 80 100</td>
<td>30 50 80 100</td>
</tr>
<tr>
<td>Wiederholbares Spitzendrehmoment</td>
<td>27 56 74 82 87 92</td>
<td>50 98 137 157 167 176</td>
</tr>
<tr>
<td>Durchschnittsdrehmoment</td>
<td>20 34 47 49 49 49</td>
<td>38 55 87 108 108 108</td>
</tr>
<tr>
<td>Nenndrehmoment</td>
<td>15 25 34 40 40 40</td>
<td>27 39 63 67 67 67</td>
</tr>
<tr>
<td>Kollisionsdrehmoment</td>
<td>50 98 127 147 147 147</td>
<td>95 186 255 284 304 314</td>
</tr>
<tr>
<td>Max. Antriebsdrehzahl (Ölschmierung)</td>
<td>n_{in,max} [min⁻¹]</td>
<td>10000</td>
</tr>
<tr>
<td>Max. Antriebsdrehzahl (Fettschmierung)</td>
<td>n_{in,max} [min⁻¹]</td>
<td>6500</td>
</tr>
<tr>
<td>Mittlere Antriebsdrehzahl (Ölschmierung)</td>
<td>n_{in,[max]} [min⁻¹]</td>
<td>6500</td>
</tr>
<tr>
<td>Mittlere Antriebsdrehzahl (Fettschmierung)</td>
<td>n_{in,[max]} [min⁻¹]</td>
<td>3500</td>
</tr>
<tr>
<td>Massenträgheitsmoment</td>
<td>I_{jin} [x10⁻⁴ kgm²]</td>
<td>0.112</td>
</tr>
<tr>
<td>Gewicht</td>
<td>m [kg]</td>
<td>0.14</td>
</tr>
</tbody>
</table>
3.3.2 Abmessungen

Abbildung 11.1 CPL-14-2A [mm] Abbildung 11.2 CPL-17-2A

Abbildung 11.3 CPL-20-2A [mm] Abbildung 11.4 CPL-25-2A

QUICKLINK www.harmonicdrive.de/CAD3030
<table>
<thead>
<tr>
<th>Einheit</th>
<th>CPL-32-2A</th>
</tr>
</thead>
<tbody>
<tr>
<td>i []</td>
<td>30</td>
</tr>
<tr>
<td>T_R [Nm]</td>
<td>100</td>
</tr>
<tr>
<td>T_N [Nm]</td>
<td>75</td>
</tr>
<tr>
<td>T_A [Nm]</td>
<td>54</td>
</tr>
<tr>
<td>T_{so} [Nm]</td>
<td>200</td>
</tr>
<tr>
<td>$n_{i_{\text{max}}} \left(\text{min}^{-1} \right)$</td>
<td></td>
</tr>
<tr>
<td>$n_{o_{\text{max}}} \left(\text{min}^{-1} \right)$</td>
<td></td>
</tr>
<tr>
<td>$n_{a_{\text{max}}} \left(\text{min}^{-1} \right)$</td>
<td></td>
</tr>
<tr>
<td>$n_{a_{\text{max}}} \left(\text{min}^{-1} \right)$</td>
<td></td>
</tr>
<tr>
<td>$J_n \left[\times 10^{-4} \text{kgm}^2 \right]$</td>
<td></td>
</tr>
<tr>
<td>m [kg]</td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 12.2: CPL-32-2A [mm]

QUICKLINK www.harmonicdrive.de/CAD3030
3.3.3 Minimaler Gehäuseabstand

Tabelle 13.1

<table>
<thead>
<tr>
<th>Baugröße</th>
<th>14</th>
<th>17</th>
<th>20</th>
<th>25</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>ØZ</td>
<td>38</td>
<td>45</td>
<td>53</td>
<td>66</td>
<td>86</td>
</tr>
<tr>
<td>X</td>
<td>24,5</td>
<td>27,5</td>
<td>30,5</td>
<td>35,5</td>
<td>43,5</td>
</tr>
<tr>
<td>Y</td>
<td>0,4</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
<td>1,2</td>
</tr>
</tbody>
</table>

Abbildung 13.2
3.3.4 Genauigkeit

Tabelle 14.1

<table>
<thead>
<tr>
<th>Baugröße</th>
<th>14</th>
<th>17</th>
<th>≥20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untersetzung</td>
<td>30</td>
<td>≥50</td>
<td>30</td>
</tr>
<tr>
<td>Übertragungsgenauigkeit 1)</td>
<td><2</td>
<td><1,5</td>
<td><1,5</td>
</tr>
<tr>
<td>Hystereseverlust</td>
<td><3</td>
<td><1</td>
<td><3</td>
</tr>
<tr>
<td>Lost Motion</td>
<td><1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wiederholgenauigkeit</td>
<td>< ± 0,1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Höhere Genauigkeit auf Anfrage

3.3.5 Torsionssteifigkeit

Tabelle 14.2

<table>
<thead>
<tr>
<th>Baugröße</th>
<th>14</th>
<th>17</th>
<th>20</th>
<th>25</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₁ [Nm]</td>
<td>2</td>
<td>3,9</td>
<td>7</td>
<td>14</td>
<td>29</td>
</tr>
<tr>
<td>T₂ [Nm]</td>
<td>6,9</td>
<td>12</td>
<td>25</td>
<td>48</td>
<td>108</td>
</tr>
<tr>
<td>i = 30</td>
<td>3,4</td>
<td>6,7</td>
<td>11</td>
<td>21</td>
<td>49</td>
</tr>
<tr>
<td>K₃ [x10⁶ Nm/rad]</td>
<td>2,4</td>
<td>4,4</td>
<td>7,1</td>
<td>13</td>
<td>30</td>
</tr>
<tr>
<td>K₁ [x10⁶ Nm/rad]</td>
<td>1,9</td>
<td>3,4</td>
<td>5,7</td>
<td>10</td>
<td>24</td>
</tr>
<tr>
<td>i = 50</td>
<td>5,7</td>
<td>13</td>
<td>23</td>
<td>44</td>
<td>98</td>
</tr>
<tr>
<td>K₃ [x10⁶ Nm/rad]</td>
<td>4,7</td>
<td>11</td>
<td>18</td>
<td>34</td>
<td>78</td>
</tr>
<tr>
<td>K₁ [x10⁶ Nm/rad]</td>
<td>3,4</td>
<td>8,1</td>
<td>13</td>
<td>25</td>
<td>54</td>
</tr>
<tr>
<td>i > 50</td>
<td>7,1</td>
<td>16</td>
<td>29</td>
<td>57</td>
<td>120</td>
</tr>
<tr>
<td>K₃ [x10⁶ Nm/rad]</td>
<td>6,1</td>
<td>14</td>
<td>25</td>
<td>50</td>
<td>110</td>
</tr>
<tr>
<td>K₁ [x10⁶ Nm/rad]</td>
<td>4,7</td>
<td>10</td>
<td>16</td>
<td>31</td>
<td>67</td>
</tr>
</tbody>
</table>
4. Antriebsauslegung

Mit Harmonic Drive® Getrieben sind unterschiedliche An- und Abtriebsanordnungen möglich.

Gleichung 15.1

\[
\text{Untersetzung } i = \frac{\text{Antriebsdrehzahl}}{\text{Abtriebsdrehzahl}}
\]

Überblick Harmonic Drive® Produkte

Die drei Hauptkomponenten der Harmonic Drive® Units, Circular Spline (CS), Flexspline (FS) und Wave Generator (WG) sind in der Abbildung 15.2 zu sehen.

Abbildung 15.2

Die Werte für Untersetzungen von Harmonic Drive® Getrieben beziehen sich auf die standard An- und Abtriebsanordnung (Beispiel 1, nachstehende Tabelle). Andere Anordnungen sind möglich und ebenfalls in der Tabelle dargestellt.
Untersetzung

<table>
<thead>
<tr>
<th>1)</th>
<th>2)</th>
<th>3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untersetzungsgetriebe</td>
<td>Untersetzungsgetriebe</td>
<td>Untersetzungsgetriebe</td>
</tr>
<tr>
<td>CS</td>
<td>Fixiert</td>
<td>FS</td>
</tr>
<tr>
<td>WG</td>
<td>Antrieb</td>
<td>WG</td>
</tr>
<tr>
<td>FS</td>
<td>Abtrieb</td>
<td>CS</td>
</tr>
</tbody>
</table>

Gleichung 16.1

\[\text{Untersetzung} = \frac{1}{i} \]

An- und Abtrieb drehen entgegengesetzt.

Gleichung 16.2

\[\text{Untersetzung} = \frac{i + 1}{1} \]

An- und Abtrieb drehen gleichsinnig.

Gleichung 16.3

\[\text{Untersetzung} = \frac{i}{1} \]

An- und Abtrieb drehen gleichsinnig.

<table>
<thead>
<tr>
<th>4)</th>
<th>5)</th>
<th>6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Übersetzungsgetriebe</td>
<td>Übersetzungsgetriebe</td>
<td>Übersetzungsgetriebe</td>
</tr>
<tr>
<td>WG</td>
<td>Fixiert</td>
<td>FS</td>
</tr>
<tr>
<td>CS</td>
<td>Antrieb</td>
<td>CS</td>
</tr>
<tr>
<td>FS</td>
<td>Abtrieb</td>
<td>WG</td>
</tr>
</tbody>
</table>

Gleichung 16.4

\[\text{Untersetzung} = \frac{1}{i + 1} \]

An- und Abtrieb drehen gleichsinnig.

Gleichung 16.5

\[\text{Untersetzung} = - \frac{1}{1} \]

An- und Abtrieb drehen entgegengesetzt.

Gleichung 16.6

\[\text{Untersetzung} = \frac{1}{i + 1} \]

An- und Abtrieb drehen gleichsinnig.

<table>
<thead>
<tr>
<th>7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differenzialgetriebe</td>
</tr>
<tr>
<td>WG</td>
</tr>
<tr>
<td>CS</td>
</tr>
<tr>
<td>FS</td>
</tr>
</tbody>
</table>

Zahlreiche Differenzialfunktionen können durch Kombination der Drehzahl und Drehrichtung der drei Bauteile erreicht werden. Wir beraten Sie gerne!
4.1 Auslegung von Harmonic Drive® Getrieben

Wir übernehmen gerne Ihre Getriebeauslegung in unserem Haus. Bitte kontaktieren Sie unsere Anwendungsberater.
4.1.1 Drehmomentbasierte Auslegung

Belastungsdaten des Abtriebes

Drehmomente $T_1...T_n$ [Nm]

während der Belastungszeit $t_1...t_n$ [s]

während der Pausenzeit t_p [s]

und Abtriebsdrehzahl $n_1...n_n$ [min⁻¹]

Not-Stopp / Kollisionsmoment T_k [Nm]

bei Abtriebsdrehzahl n_k [min⁻¹]

während der Zeit t_k [s]

Gleichung 18.2

Belastungsgrenze 1

Ermittlung des durchschnittlichen Abtriebsdrehmomentes T_{av}

$T_{av} = \sqrt{\frac{|n_1| \cdot t_1 + |n_2| \cdot t_2 + ... + |n_n| \cdot t_n}{t_1 + t_2 + ... + t_n + t_p}}$

Gleichung 18.3

Werte für T_{av} siehe technische Daten $T_{av} \leq T_A$

Nein

Auswahl eines größeren Getriebes

Gleichung 18.4

Berechnung der durchschnittlichen Abtriebsdrehzahl

$n_{av} = \frac{|n_1| \cdot t_1 + |n_2| \cdot t_2 + ... + |n_n| \cdot t_n}{t_1 + t_2 + ... + t_n + t_p}$

Gleichung 18.5

Durchschnittliche Antriebsdrehzahl $n_{av} = i \cdot n_{av}$

Gleichung 18.6

Zulässige maximale Antriebsdrehzahl

$n_{av, max} = n_{av, max} \cdot i \leq$ Maximale Antriebsdrehzahl (siehe Technische Daten)

Gleichung 18.7

Zulässige mittlere Antriebsdrehzahl $n_{av} \leq$ Grenze für mittlere Antriebsdrehzahl (siehe technische Daten)

Gleichung 18.8

Belastungsgrenze 2, T_K

$T_{max} \leq T_K$

Gleichung 18.9

Belastungsgrenze 3, T_M

$T_s \leq T_M$

Gleichung 18.10

Erlaubte Anzahl von Kollisionsmomenten

$N_k max = \frac{10^4}{2 \cdot \frac{n_k}{60} + t_k} < 10^4$

Gleichung 18.11

Lebensdauer

$L_{50} = L_s \cdot \frac{Nenn-Antriebsdrehzahl}{n_{av}} \left(\frac{Nennmoment T_k}{T_{av}} \right)^4$

Werte für L_s siehe Tabelle 20.1
Belastungsdaten am Abtrieb

\[T_1 = 400 \text{ Nm} \quad t_1 = 0.3 \text{ s} \quad n_1 = 7 \text{ min}^{-1} \]
\[T_2 = 320 \text{ Nm} \quad t_2 = 3.0 \text{ s} \quad n_2 = 14 \text{ min}^{-1} \]
\[T_3 = 200 \text{ Nm} \quad t_3 = 0.4 \text{ s} \quad n_3 = 7 \text{ min}^{-1} \]
\[T_4 = 500 \text{ Nm} \quad t_4 = 0.15 \text{ s} \quad n_4 = 14 \text{ min}^{-1} \]
\[t_p = 0.2 \text{ s} \quad n_p = 0 \text{ min}^{-1} \]

Untersetzung \(i = 120 \)
Lebensdauer \(L_{50} = 30000 \text{ h} \) (gefördert)

Belastungsgrenze 1,

Ermittlung des durchschnittlichen Abtriebsdrehmomentes \(T_{av} \)

\[T_{av} = \sqrt{7 \text{ min}^{-1} \cdot (400 \text{ Nm})^3 \cdot 0.3 \text{ s} + 14 \text{ min}^{-1} \cdot (320 \text{ Nm})^3 \cdot 3 \text{ s} + 7 \text{ min}^{-1} \cdot (200 \text{ Nm})^3 \cdot 0.4 \text{ s}} \]

\[7 \text{ min}^{-1} \cdot 0.3 \text{ s} + 14 \text{ min}^{-1} \cdot 3 \text{ s} + 7 \text{ min}^{-1} \cdot 0.4 \text{ s} \]

Ausgewähltes Getriebe
HFUC-40-120-2A-GR

Belastungsgrenze 2, \(T_a \)

\[T_{max} = 400 \text{ Nm} \leq T_{a} = 617 \text{ Nm} \]

Zulässige maximale Antriebsdrehzahl
\[n_{a,\text{max}} = 14 \text{ min}^{-1} \cdot 120 = 1680 \text{ min}^{-1} \leq 4000 \text{ min}^{-1} \]

Belastungsgrenze 3, \(T_m \)

\[T_{max} = 500 \text{ Nm} \leq T_{m} = 1180 \text{ Nm} \]

Zulässige mittlere Antriebsdrehzahl
\[n_{m,\text{av}} = 1440 \text{ min}^{-1} \leq 3000 \text{ min}^{-1} \]

Erlaubte Anzahl von Kollisionsmomenten
\[N_{k,\text{max}} = \frac{10^4 \cdot 14 \cdot 120}{60 \cdot 0.15} = 1190 < 10^4 \]

Lebensdauer
HFUC-40-120-2A-GR:

\[L_{50} = \frac{35000 \text{ h} \cdot 2000 \text{ min}^{-1} \cdot (294 \text{ Nm})^3}{1440 \text{ min}^{-1} \cdot 319 \text{ Nm}} \]

\[L_{50} = 38054 \text{ h} > 30000 \text{ h} \]
4.1.2 Lebensdauer des Wave Generator Kugellagers

Die Lebensdauerberechnung für Harmonic Drive® Getriebe bezieht sich auf die Lebensdauer des Wave Generator-Kugellagers. Die in den Leistungsdatenständen angegebenen Nenndrehmomente bei Nenndrehzahl basieren auf einer mittleren Lagerlebensdauer L_{50}.

Die zu erwartende Lebensdauer kann bei gegebener Eingangsdrehzahl $n_{in\ av}$ [min⁻¹] und gegebenem Abtriebsdrehmoment T [Nm] mit Gleichung 20.2 ermittelt werden.

Tabelle 20.1

<table>
<thead>
<tr>
<th>Harmonic Drive Baureihen</th>
<th>L_e</th>
</tr>
</thead>
<tbody>
<tr>
<td>CobaltLine, CSG, SHG</td>
<td>50000</td>
</tr>
<tr>
<td>HFUC, HFUS, CSD, CPU, CSF, SHD</td>
<td>35000</td>
</tr>
<tr>
<td>PMG Getriebebox</td>
<td>15000</td>
</tr>
</tbody>
</table>

Gleichung 20.2

$$L_{50} = L_e \frac{n_e}{n_{in\ av}} \left(\frac{T}{T_{av}}\right)^{\frac{1}{3}}$$

Gleichung 20.3

$$L_{20} = \frac{2}{3} L_{50}$$

n_e = Nenndrehzahl am Antrieb [min⁻¹]
$n_{in\ av}$ = Durchschnittliche Antriebsdrehzahl [min⁻¹] (Gleichung 18.5)
T_e = Nenndrehmoment bei Nenndrehzahl [Nm]
T_{av} = Durchschnittliches Abtriebsdrehmoment [Nm] (Gleichung 18.2)
L_{50} = siehe Tabelle 20.1
4.1.3 Steifigkeitsbasierte Auslegung

Tabelle 21.1

<table>
<thead>
<tr>
<th>Anwendung</th>
<th>(f_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Langsam drehende Drehtische, langsam drehende Schweissroboter Grundachsen (kein Laserschweissen), langsam drehende Schweiß- und Schwenktische, Palettierroboter-Achsen</td>
<td>(\geq 4)</td>
</tr>
<tr>
<td>Knickarmroboter Grundachsen, Knickarmroboter Handachsen mit geringen Dynamikanforderungen, Werkzeugrevolver, Werkzeugmagazine, Schwenk- und Positionierachsen in medizinischen Geräten und Messgeräten</td>
<td>(\geq 8)</td>
</tr>
<tr>
<td>Standard Anwendungen im allgemeinen Maschinenbau, Schwenkachsen, Palettenwechsler, hochdynamische Werkzeugwechsler, -revolver, -magazine, Knickarmroboter Handachsen, Scara Roboter, Portalroboter, Polierroboter, Dynamische Schweißwender, Schweissroboter Grundachsen (Laserschweißen), Schwenk- und Positionierachsen in medizinischen Geräten</td>
<td>(\geq 15)</td>
</tr>
<tr>
<td>B/C-Achsen in 5-Achs Schleifmaschinen, Schweissroboter Handachsen (Laserschweissen), Fräsköpfe Kunststoffbearbeitung</td>
<td>(\geq 20)</td>
</tr>
<tr>
<td>C-Achsen in Drehmaschinen, Fräsköpfe Leichtmetallbearbeitung, Fräsköpfe Holzbearbeitung (Spanplatten etc.)</td>
<td>(\geq 25)</td>
</tr>
<tr>
<td>Fräsköpfe Holzbearbeitung (Hartholz etc.)</td>
<td>(\geq 30)</td>
</tr>
<tr>
<td>C-Achsen in Drehmaschinen*</td>
<td>(\geq 35)</td>
</tr>
<tr>
<td>Fräsköpfe für Metallbearbeitung*, B-Achsen in Dreh-Fräszentren für Metallbearbeitung</td>
<td>(\geq 40)</td>
</tr>
<tr>
<td>Fräsköpfe für Metallbearbeitung*, B-Achsen in Dreh-Fräszentren für Metallbearbeitung mit hohen Anforderungen an die Oberflächenqualität*</td>
<td>(\geq 50)</td>
</tr>
<tr>
<td>Fräsköpfe für Metallbearbeitung mit sehr hohen Anforderungen an die Oberflächenqualität*</td>
<td>(\geq 60)</td>
</tr>
</tbody>
</table>

* Je nach Anwendung kann eine nachgeschaltete Getriebestufe sinnvoll sein. Wir empfehlen Rücksprache mit der Harmonic Drive AG.
Auslegungsbeispiel: Steifigkeitsbasierte Auslegung

Resonanzfrequenz (Getriebeabtrieb)

Mit der Formel

\[
 f_n = \frac{1}{2\pi} \sqrt{\frac{K_1}{J}} \quad [\text{Hz}]
\]

\[
 f_n = \text{Resonanzfrequenz [Hz]}
\]

\[
 K_1 = \text{Getriebe Torsionssteifigkeit } K_1 \quad [\text{Nm/rad}]
\]

\[
 J = \text{Massenträgheitsmoment der Last [kgm}^2\text{]}
\]

kann bei gegebener Torsionssteifigkeit \(K_1 \) des Harmonic Drive® Getriebes und dem Massenträgheitsmoment der Last die abtriebsseitige Resonanzfrequenz berechnet werden. Die berechnete Frequenz sollte dem in Tabelle 21.1 angegebenen Wert entsprechen. Mit steigendem Massenträgheitsmoment der Last steigt auch der Einfluss der Anwendung auf das Auslegungsergebnis. Wenn das Massenträgheitsmoment = 0 ist, hat die gewählte Anwendung keinen rechnerischen Einfluss auf das Auslegungsergebnis.

Resonanzdrehzahl (Getriebeeingang)

Die Resonanzdrehzahl \(n_n \) der Antriebsseite (Motorseite) kann mit der Formel

\[
 n_n = f_n \cdot 30 \quad [\text{min}^{-1}]
\]

berechnet werden. Wir empfehlen, die Resonanzdrehzahl im Betrieb zügig zu durchfahren. Dies kann durch die Wahl einer geeigneten Getriebeuntersetzung erfolgen. Eine andere Möglichkeit ist die Wahl einer geeigneten Getriebesteifigkeit, so dass die Resonanzdrehzahl außerhalb des geforderten Drehzahlbereichs liegt.

Auslegungsbeispiel

Geplante Anwendung: Fräskopf Holzbearbeitung

Abtriebsseitiges Massenträgheitsmoment: 7 kgm²

Empfohlene Resonanzfrequenz aus Tabelle 21.1: \(\geq 30 \) Hz.

Resonanzfrequenz mit dem vorausgewählten Getriebe HFUC-40-120-2A-GR:

\[
 f_n = \frac{1}{2\pi} \sqrt{\frac{1,3 \cdot 10^5}{7}} = 22 \quad [\text{Hz}]
\]

Gemäß steifigkeitsbasierteter Auslegung ist diese Baugröße für die Anwendung zu klein.

Mit dem größeren Getriebe HFUC-50-120-2A-GR ergibt sich die Resonanzfrequenz:

\[
 f_n = \frac{1}{2\pi} \sqrt{\frac{2,5 \cdot 10^5}{J}} = 30 \quad [\text{Hz}]
\]

Die Resonanzdrehzahl am Antrieb (Motor) beträgt:

\[
 n_n = 30 \times 30 = 900 \quad [1/\text{min}]
\]

Diese Drehzahl sollte während dem Beschleunigen / Bremsen zügig durchfahren werden oder außerhalb des genutzten Drehzahlbereichs liegen.
4.2 Berechnung des Torsionswinkels

Der Torsionswinkel des Getriebes unter Last kann wie folgt berechnet werden:

\[\phi = \frac{T}{K_1} \]

\[\phi = \frac{T_1 - T}{K_1 + K_2} \]

\[\phi = \frac{T_1 - T}{K_1 + K_2 + K_3} \]

\(\phi \) = Winkel [rad]
\(T \) = Grenzdrehmomente 1 aus Sektion 3.3.5 [Nm]
\(T_1 \) = Grenzdrehmomente 2 aus Sektion 3.3.5 [Nm]
\(K_1 \) = Torsionssteifigkeit bis Grenzdrehmoment \(T \) aus Sektion 3.3.5 [Nm/rad]
\(K_2 \) = Torsionssteifigkeit bis Grenzdrehmoment \(T_1 \) aus Sektion 3.3.5 [Nm/rad]
\(K_3 \) = Torsionssteifigkeit oberhalb Grenzdrehmoment \(T_2 \) aus Sektion 3.3.5 [Nm/rad]

Beispiel: HFUC-32-100-2UH

\[T = 60 \text{ Nm} \quad K_1 = 6.7 \cdot 10^4 \text{ Nm/rad} \]
\[T_1 = 29 \text{ Nm} \quad K_2 = 1.1 \cdot 10^5 \text{ Nm/rad} \]
\[T_2 = 108 \text{ Nm} \quad K_3 = 1.2 \cdot 10^5 \text{ Nm/rad} \]

\[\phi = \frac{29 \text{ Nm}}{6.7 \cdot 10^4 \text{ Nm/rad}} + \frac{60 \text{ Nm} - 29 \text{ Nm}}{11 \cdot 10^4 \text{ Nm/rad}} \]
\[\phi = 7.15 \cdot 10^{-4} \text{ rad} \]
\[\phi = 2.5 \text{ arc min} \]

\[\phi \text{ [arc min]} = \phi \text{ [rad]} \cdot \frac{180 \cdot 60}{\pi} \]
4.3 Lastabhängiger Wirkungsgrad

4.3.1 Wirkungsgradberechnung

Berechnungsschema

<table>
<thead>
<tr>
<th>Berechnungsschema</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wirkungsgrad eines HFUC-20-80-2A-GR mit einer Antriebsdrehzahl (n = 1000 \text{ min}^{-1}) Abtriebsdrehmoment (T = 19,6 \text{ Nm}) bei 20 °C Umgebungstemperatur. Schmiertmittel: Fett</td>
</tr>
</tbody>
</table>

Der Wirkungsgrad wird mittels der Wirkungsgrad-Diagramme ermittelt.

Aus zugehörigem Diagramm \(\eta = 78 \% \)

Berechnung des Drehmomentfaktors \(V \).

\[
V = \frac{T_v}{T_n} \quad \text{[Gleichung 24.2]}
\]

mit:

\(T_v \) = Durchschnittliches Drehmoment

\(T_n \) = Nenndrehmoment bei Nenndrehzahl

\[
V = \frac{19,6 \text{ Nm}}{34,0 \text{ Nm}} = 0,57
\]

Berechnungsfaktor \(K \) in Abhängigkeit von Getriebebaureihe und \(V \), siehe Abb. 24.2.

\[
\eta_L = \eta \cdot K \quad \text{[Gleichung 24.3]}
\]

\[
\eta_L = 78 \cdot 0,93 = 73 \%
\]

Berechnungsfaktor \(K \)

Abbildung 24.4
4.3.2 Wirkungsgradtabellen

Tabellen Öl

Wirkungsgrad für Ölschmierung bei Nenndrehmoment.

Abbildung 25.1
Tabellen Fett

Wirkungsgrad für Fettschmierung bei Nenndrehmoment Harmonic Drive® Schmierfett.

Baugröße 14

Abbildung 26.1
Baugröße 17 - 32

Abbildung 271

Temperatur [°C]

Untersetzung = 30

Untersetzung = 80, 100

Untersetzung = 120

Untersetzung = 50

Untersetzung = 160

Wirkungsgrad [%]

Temperatur [°C] 500 rpm 1000 rpm 2000 rpm 3500 rpm

Temperatur [°C]

Temperatur [°C]

Temperatur [°C]

Temperatur [°C] 500 rpm 1000 rpm 2000 rpm 3500 rpm

Temperatur [°C] 500 rpm 1000 rpm 2000 rpm 3500 rpm

Temperatur [°C] 500 rpm 1000 rpm 2000 rpm 3500 rpm

Temperatur [°C] 500 rpm 1000 rpm 2000 rpm 3500 rpm
4.4 Lastfreie Drehmomente

Lastfreies Laufdrehmoment
Das lastfreie Laufdrehmoment ist das Antriebsmoment (schnelle Seite), welches benötigt wird, um das Getriebe bei einer definierten Antriebsdrehzahl ohne Last antreiben zu können.

Lastfreies Anlaufdrehmoment
Das lastfreie Anlaufdrehmoment ist ein quasi statisches Drehmoment, das benötigt wird, um das Antriebselement (schnelle Seite) ohne Belastung am Abtriebselement (langsamer Seite) in Bewegung zu bringen.

Lastfreies Rückdrehmoment

Die Diagramme gelten für: Harmonic Drive® Schmierfett, Standard Schmierstoffmenge gemäß Katalog Getriebe Untersetzung i = 100. Beim Einsatz anderer Untersetzungen sind die Korrekturwerte zu berücksichtigen. Bei Ölschmierung bitte Rücksprache mit der Harmonic Drive AG.

4.4.1 Lastfreies Laufdrehmoment

Abbildung 28.1

![Diagramme](image-url)
Korrekturwerte Lastfreies Laufdrehmoment

Beim Einsatz von Getrieben mit Untersetzungen $i \neq 100$ sind die aus den Kurven abgelesenen Daten um die folgenden Werte zu korrigieren.

<table>
<thead>
<tr>
<th>Untersetzung</th>
<th>14</th>
<th>17</th>
<th>20</th>
<th>25</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>1,1</td>
<td>1,8</td>
<td>2,7</td>
<td>5,0</td>
<td>10</td>
</tr>
<tr>
<td>50</td>
<td>0,5</td>
<td>0,8</td>
<td>1,2</td>
<td>2,2</td>
<td>4,5</td>
</tr>
<tr>
<td>80</td>
<td>0,1</td>
<td>0,1</td>
<td>0,2</td>
<td>0,3</td>
<td>0,7</td>
</tr>
<tr>
<td>120</td>
<td>-</td>
<td>-0,1</td>
<td>-0,1</td>
<td>-0,2</td>
<td>-0,5</td>
</tr>
<tr>
<td>160</td>
<td>-</td>
<td>-</td>
<td>-0,3</td>
<td>-0,6</td>
<td>-1,2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Untersetzung</th>
<th>14</th>
<th>17</th>
<th>20</th>
<th>25</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>4,3</td>
<td>6,5</td>
<td>11</td>
<td>19</td>
<td>45</td>
</tr>
<tr>
<td>50</td>
<td>3,3</td>
<td>5,1</td>
<td>6,6</td>
<td>12</td>
<td>26</td>
</tr>
<tr>
<td>80</td>
<td>2,4</td>
<td>3,3</td>
<td>4,1</td>
<td>7,7</td>
<td>16</td>
</tr>
<tr>
<td>100</td>
<td>2,1</td>
<td>2,9</td>
<td>3,7</td>
<td>6,9</td>
<td>15</td>
</tr>
<tr>
<td>120</td>
<td>-</td>
<td>2,7</td>
<td>3,3</td>
<td>6,3</td>
<td>13</td>
</tr>
<tr>
<td>160</td>
<td>-</td>
<td>-</td>
<td>2,9</td>
<td>5,5</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Untersetzung</th>
<th>14</th>
<th>17</th>
<th>20</th>
<th>25</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>2,0</td>
<td>3,2</td>
<td>5,5</td>
<td>10</td>
<td>21</td>
</tr>
<tr>
<td>50</td>
<td>1,4</td>
<td>2,5</td>
<td>4,0</td>
<td>7,5</td>
<td>16</td>
</tr>
<tr>
<td>80</td>
<td>1,4</td>
<td>2,5</td>
<td>4,2</td>
<td>7,7</td>
<td>16</td>
</tr>
<tr>
<td>100</td>
<td>1,7</td>
<td>2,8</td>
<td>4,5</td>
<td>8,4</td>
<td>18</td>
</tr>
<tr>
<td>120</td>
<td>-</td>
<td>3,1</td>
<td>4,9</td>
<td>9,2</td>
<td>19</td>
</tr>
<tr>
<td>160</td>
<td>-</td>
<td>-</td>
<td>5,8</td>
<td>11</td>
<td>23</td>
</tr>
</tbody>
</table>
4.5 Schmierung

Leistungsdaten und Schmierstoffe
Harmonic Drive®-Produkte erzielen mit den im Katalog genannten Schmierstoffen im Standard-Umgebungstemperaturenbereich (0 °C bis 40 °C) die spezifizierten Leistungsdaten und Eigenschaften. Eine Gewährleistung für die im Katalog genannten Daten kann von der Harmonic Drive AG nur dann übernommen werden, wenn die für das jeweilige Produkt freigegebenen Harmonic Drive® Schmierfette oder die genannten Mineralöle verwendet werden. Andere als die von der Harmonic Drive AG empfohlenen Schmierstoffe und Schmierstoffmengen sollten bei Bedarf mittels Prototypentests qualifiziert werden.

Beim Einsatz von Schmierstoffen, die nicht im Katalog empfohlen oder für die Anwendung schriftlich freigegeben sind, geht der Gewährleistungsanspruch verloren.

4.5.1 Fettschmierung

Einsatz der Harmonic Drive®-Schmierfette

Achtung!

| Tabelle 30.1 |
| Tabelle 30.2 |

Untersetzung ≥ 50

<table>
<thead>
<tr>
<th>Fett</th>
<th>8</th>
<th>11</th>
<th>14</th>
<th>17</th>
<th>20</th>
<th>25</th>
<th>32</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>58</th>
<th>65</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexolub A1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>SK-1A</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>SK-2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4BNo.2</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Standard für CPU und CobaltLine

<table>
<thead>
<tr>
<th>Untersetzung = 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fett</td>
</tr>
<tr>
<td>Flexolub A1</td>
</tr>
<tr>
<td>SK-1A</td>
</tr>
<tr>
<td>SK-2</td>
</tr>
<tr>
<td>4BNo.2</td>
</tr>
</tbody>
</table>

Standard für CPU

Bemerkungen:

* = empfohlen bei hoch beanspruchten Getrieben oder Betriebstemperaturen zwischen -10 °C und +110 °C
– = nicht freigegeben
Tabelle 31.1 enthält einige wichtige Informationen zu den Harmonic Drive® Schmierfetten.

Tabelle 31.1

<table>
<thead>
<tr>
<th>Typ</th>
<th>Harmonic Drive® Schmierfette</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>SK-1A</td>
</tr>
<tr>
<td>Betriebstemperaturbereich</td>
<td>0 °C ... +80 °C</td>
</tr>
<tr>
<td>Grundöl</td>
<td>Mineralöl</td>
</tr>
<tr>
<td>Verdicker</td>
<td>Lithium-Seife</td>
</tr>
<tr>
<td>Konsistenzklasse (NLGI)</td>
<td>2</td>
</tr>
<tr>
<td>Grundöl-Viskosität (40 °C, 100 °C)</td>
<td>37; 5,9 mm²/s</td>
</tr>
<tr>
<td>Tropfpunkt</td>
<td>197 °C</td>
</tr>
<tr>
<td>Farbe</td>
<td>gelb</td>
</tr>
<tr>
<td>Max. Lagerzeit im luftdicht abgeschlossenen Behälter</td>
<td>5 Jahre</td>
</tr>
<tr>
<td>Dichtigkeit (Sicherheit gegen Fett- bzw. Grundölleckage an den Radialwellendichtungen)</td>
<td>+</td>
</tr>
</tbody>
</table>

Bemerkungen:
+ = Gut
+/- = Je nach Design / Einbautage / Anwendung eventuell kritisch, bitte Rücksprache mit der Harmonic Drive AG

Sicherheitsdatenblätter und technische Datenblätter für die Harmonic Drive® Schmierstoffe sind von der Harmonic Drive AG erhältlich.

Vorsichtsmaßnahmen für die Anwendung von Harmonic Fett 4BNo.2

Harmonic Fett 4BNo.2 hat die Eigenschaften (Viskosität, Schereigenschaften etc.), die für Harmonic Drive® Getriebe benötigt werden. Die folgenden Maßnahmen können die Lebensdauer des Schmiermittels verbessern:

1.) Vor dem Betrieb alle erforderlichen Bereiche einfetten.
2.) Entfernen Sie alle Abriebpartikel nach der Einlaufzeit.
3.) Fetten Sie noch einmal alle Kontaktflächen.

Vorsichtsmaßnahmen

1.) Beim Schmieren:
Die Konsistenz des Harmonic Fetts 4BNo.2 ist während der Lagerung fester als im Betrieb. Beachten Sie jedoch, dass die Konsistenz durch die Lagerzeit variieren kann. Vor dem Schmieren sollten Sie das Fett umrühren, um die Konsistenz weicher zu machen.

2.) Zeitliche Änderung (Einlaufen):
Der Einlaufprozess vor dem Vollauslasten des Getriebes lässt das Fett weicher werden. Eine effektive Getriebeleistung kann nur realisiert werden, wenn das Fett zu den erforderlichen Kontaktflächen gelangt.

Daher wird der folgende Einlaufprozess empfohlen:
• Halten Sie die interne Betriebstemperatur unter 80 °C. Achten Sie darauf, einen steilen Anstieg der Temperatur während des Einlaufprozesses zu vermeiden.
• Begrenzen Sie die Eingangsrdrehzahl zwischen 1000 und 3000 Umdrehungen pro Minute. Niedrigere Geschwindigkeiten sind effektiver. Wählen Sie eine Eingangsrdrehzahl so nah wie möglich an 1000 Umdrehungen pro Minute.
• Die für den Einlauf benötigte Zeit beträgt 20 Minuten oder länger.
• Halten Sie die Ausgangsdrehwinkel so groß wie möglich während des Einlaufprozesses.

Kontaktieren Sie unser Büro, wenn Sie Fragen zum Umgang mit Harmonic Fett 4BNo.2 haben.
4.5.2 Ölschmierung

Für Harmonic Drive® Einbausätze ist Ölschmierung möglich. Wir empfehlen Mineralöl CLP 68 (ISO VG 68) nach DIN 51517 T3.

Tabelle 32.1

<table>
<thead>
<tr>
<th>Hersteller</th>
<th>Klüber</th>
<th>Mobil</th>
<th>Castrol</th>
<th>Shell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bezeichnung</td>
<td>Syntheso D 68 EP</td>
<td>Mobilgear 600 XP 68</td>
<td>Optigear BM 68</td>
<td>Omala S2 G 68</td>
</tr>
</tbody>
</table>

Bitte Hinweise aus 5.6.4 beachten.

Bemerkungen:

1. Betriebstemperatur = Schmierstofftemperatur
2. Anwendungstests empfohlen
5. Empfohlen bei Anwendungen, die bestmöglichen Wirkungsgrad bei tiefen Temperaturen erfordern. Für hohe Abtriebsdrehmomente nicht geeignet.
4.6 Axialkräfte am Wave Generator

Wird ein Harmonic Drive® Getriebe im Untersetzungsbetrieb (Lasteinleitung über den Wave Generator) eingesetzt, so führt die Verformung des Flexsplines zu einer Axialkraft, die auf den Wave Generator in Richtung des Flex spline-Flansches wirkt, siehe Abb. 33.1. Beim Einsatz eines Harmonic Drive Einbausatzes im Übersetzungs betrieb (Rückwärtsbetrieb z. B. beim Brem sen) wirkt die Axialkraft in entgegengesetzter Richtung.

In jedem Fall muss die Axialkraft durch die Lagerung der Antriebswelle (Motorwelle) aufgenommen werden. Der Wave Generator muss deshalb in axialer Richtung auf der Antriebswelle fixiert werden. Bei geschlossenen Harmonic Drive® Units und Getriebeboxen wird die Axialkraft intern abgestützt.

Abbildung 33.1

![Diagramm](image)

Tabelle 33.2

<table>
<thead>
<tr>
<th>Untersetzung</th>
<th>(F_{ax} = 2 \cdot \frac{T}{D} \cdot \mu \cdot \tan \alpha)</th>
<th>[Gleichung 33.3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>(F_{ax} = 2 \cdot \frac{T}{32 \cdot 0,00254} \cdot 0,07 \cdot \tan 32°)</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>(F_{ax} = 2 \cdot \frac{T}{32 \cdot 0,00254} \cdot 0,07 \cdot \tan 30° + 2\mu PF)</td>
<td>[Gleichung 33.4]</td>
</tr>
<tr>
<td>80-160</td>
<td>(F_{ax} = 2 \cdot \frac{T}{32 \cdot 0,00254} \cdot 0,07 \cdot \tan 20° + 2\mu PF)</td>
<td>[Gleichung 33.5]</td>
</tr>
</tbody>
</table>

mit:

- \(F_{ax} \) = Axialkraft [N]
- \(D \) = (Baugröße) \cdot 0,00254 [m]
- \(T \) = Abtriebsdrehmoment [Nm]
- \(\mu \) = 0,07 Reibungskoeffizient
- \(2\mu PF \) = Zusatzkraft (nur CSD) [N]

Beispiel

Baugröße 32 (CSD-32-50)
Abtriebsdrehmoment = 200 Nm
Reibungskoeffizient \(\mu = 0,07 \)

\[
F_{ax} = 2 \cdot \frac{200 \text{ Nm}}{32 \cdot 0,00254} \cdot 0,07 \cdot \tan 30° + 16
\]

\(F_{ax} = 215 \text{ N} \)

Tabelle 33.3

<table>
<thead>
<tr>
<th>Baugröße</th>
<th>14</th>
<th>17</th>
<th>20</th>
<th>25</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2\mu PF) [N] für CSD und SHD</td>
<td>2,1</td>
<td>4,1</td>
<td>5,6</td>
<td>9,8</td>
<td>16</td>
</tr>
</tbody>
</table>
5. Installation und Betrieb
5.1 Transport und Lagerung
Der Transport sollte grundsätzlich in der Originalverpackung erfolgen. Wird das Getriebe nach der Auslieferung nicht gleich in Betrieb genommen, so ist es in einem trockenen Raum und in der Originalverpackung zu lagern. Die zulässige Lagertemperatur beträgt -20 °C bis +60 °C.

5.2 Anlieferungszustand
Die Getriebe werden grundsätzlich gemäß den Angaben auf der Bestätigungszeichnung ausgeliefert.

5.3 Montagehinweise

Die Anordnung der drei Bauteile des Harmonic Drive® Getriebes bezüglich Planlauf und Konzentrizität haben einen wesentlichen Einfluss auf die Genauigkeit und die Lebensdauer.

Eine falsche Ausrichtung kann sich nachteilig auf die Zuverlässigkeit auswirken. Das Einhalten der empfohlenen Montagetoleranzen ist daher besonders wichtig, um die Vorteile der Harmonic Drive® Getriebe voll auszunutzen.

Besondere Beachtung sollten folgende Hinweise finden:

1) Antriebswelle, Circular Spline und Gehäuse müssen konzentrisch angeordnet sein.
2) Ölablass (für Ölschmierung)
3) Die Flexspline-Flanschbohrung muss in Bezug auf den Circular Spline konzentrisch sein.
4) Der Klemmring mit Kantenabrundung erhöht das übertragbare Drehmoment und vermeidet Beschädigungen des Flexsplinebodens.
5) Radialwellendichtung für Ölschmierung
6) Spielfrei vorgespannte Lagerung der Abtriebswelle
7) Axialfixierung des Flexsplines
8) Entlüftungsventil (bei Bedarf)
9) Flexspline und Circular Spline müssen parallel und plan zur Abtriebswelle angeordnet sein.
10) Axialfixierung des Wave Generators
11) Öleinlass (ermöglicht auch die Montageüberprüfung)
12) Doppellagerung der Antriebswelle
Lagerung der An- und Abtriebswelle

Abbildung 36.1

Verschraubungen

Die hohe Drehmomentkapazität des Harmonic Drive® Getriebes erfordert eine sichere Schraubverbindung des Flexsplines und des Circular Splines. Um eine korrekte Verbindung herzustellen, sollten die folgenden Punkte unbedingt beachtet werden:

- Die Berechnung der Schraubverbindungen sollte auf den VDI Richtlinien 2230 basieren.
- Die Schrauben sollten Qualität 12.9 haben.
- Sicherungselemente wie Unterlegscheiben oder Zahnscheiben dürfen nicht eingesetzt werden.
- Die Abtriebswelle muss eine ausreichende Festigkeit aufweisen.
- Es muss sichergestellt sein, dass das Flanschmaterial dem Anpressdruck der Schrauben standhalten kann.
- Das Muttergewinde sollte aus Stahl oder Stahlguss sein.
- Die Rauigkeit der Flanschoberfläche sollte möglichst gering sein, um Setzverluste zu minimieren.
- Das Klemmlängenverhältnis sollte möglichst groß gewählt werden (Dicke des Anschlussflansches / Durchmesser der Schrauben).
- Um einen ausreichenden Reibungskoeffizienten zwischen den Oberflächen zu erzeugen, müssen alle Bauteile vor der Montage gereinigt, entfettet und getrocknet werden. Zur Reibungserhöhung kann das Flächendichtmittel Loctite 574 verwendet werden.
- Die Schrauben sollten mit geeigneten Werkzeugen wie beispielsweise Drehmomentschlüssel o. ä. angezogen werden.
- Alle Schraubverbindungen sollten mit Loctite Nr. 243 oder ähnlich gesichert werden.
Montage

In Abb. 37.1 sind zwei mögliche Vorgehensweisen für den Zusammenbau eines Harmonic Drive© Einbausatzes dargestellt. Die folgenden Punkte, die sinngemäß auch für Units und Getriebeboxen gelten, sollten beachtet werden:

- Die Bauteile des Getriebes sowie An- und Abtriebselemente müssen zentrisch zum umgebenden Gehäuse montiert werden.
- Schrauben müssen mit Kleber Loctite Nr. 243 gesichert werden.
- Zusätzliche Sicherungselemente wie Unterlegscheiben oder Zahnscheiben dürfen nicht verwendet werden.
- Um die Funktion des Getriebes zu gewährleisten, müssen die Verzahnungsbereiche zwischen Flexspline und Circular Spline symmetrisch zueinander angeordnet sein. Exzentrischer Zahneingriff, das sogenannte „Dedoidal“, führt zu erhöhter Geräuschenwicklung und Schwingungen, die zur Beschädigung des Getriebes führen, siehe Abb. 37.2.

Abbildung 37.1

Abbildung 37.2

Falsch (Dedoidal) Richtig
Der korrekte Zusammenbau kann wie folgt überprüft werden:

- Durch Sichtprüfung, wobei insbesondere der symmetrische Zahneingriff überprüft wird.
- Falls der Zahneingriffsbereich bei der Montage nicht sichtbar ist, kann das Getriebe an der Antriebswelle per Hand durchgedreht werden. Ungleichmäßige Rotation weist auf eine Fehlmontage („Dedoidal“) hin.
- Eine ungewöhnlich hohe Motorstromaufnahme weist bei angekoppelter Motor auf fehlerhaftes Zahneingriffsverhalten hin.
5.4 Montagetoleranzen

Um die Vorteile des Harmonic Drive® Getriebes auszunutzen, sollten bei der Montage folgende Toleranzen eingehalten werden:

<table>
<thead>
<tr>
<th>Baugröße</th>
<th>14</th>
<th>17</th>
<th>20</th>
<th>25</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0,011</td>
<td>0,012</td>
<td>0,013</td>
<td>0,014</td>
<td>0,016</td>
</tr>
<tr>
<td>b</td>
<td>0,008</td>
<td>0,011</td>
<td>0,014</td>
<td>0,018</td>
<td>0,022</td>
</tr>
<tr>
<td>c</td>
<td>0,015</td>
<td>0,018</td>
<td>0,019</td>
<td>0,022</td>
<td>0,022</td>
</tr>
<tr>
<td>d</td>
<td>0,011</td>
<td>0,015</td>
<td>0,017</td>
<td>0,024</td>
<td>0,026</td>
</tr>
<tr>
<td>e</td>
<td>0,011</td>
<td>0,015</td>
<td>0,017</td>
<td>0,024</td>
<td>0,026</td>
</tr>
<tr>
<td>f</td>
<td>0,008</td>
<td>0,010</td>
<td>0,010</td>
<td>0,012</td>
<td>0,012</td>
</tr>
<tr>
<td>g</td>
<td>0,016</td>
<td>0,018</td>
<td>0,019</td>
<td>0,022</td>
<td>0,022</td>
</tr>
</tbody>
</table>
5.5 Friction Shim

HINWEIS

Unter ungünstigen Umständen, z. B. durch mechanische Beanspruchung (Biegung), können Diamantpartikel aus ihrer Einbettung auf der Scheibenoberfläche gelöst werden. Um sicherzustellen, dass während der Montage keine Diamantpartikel von der Oberfläche der Scheibe auf die Getriebekomponenten verschleppt werden, empfehlen wir, nach der Montage der Scheibe die Handschuhe zu wechseln bzw. die Hände zu waschen.

Abbildung 40.1
5.6 Schmierung

5.6.1 Fettschmierung

Abbildung 43.1 zeigt die zu schmierenden Bereiche, siehe auch Tabelle 41.1. Die Harmonic Drive® Schmierfette 4BNo.2 und Flexolub-A1 werden im Betrieb relativ dünnflüssig. Beim Einsatz dieser Fette muss die Konstruktion daher öldicht ausgeführt werden. Bitte wenden Sie sich bei Fragen bzgl. der erforderlichen Dichtungen an die Harmonic Drive AG.

| Tabelle 41.1 |

<table>
<thead>
<tr>
<th>Baugröße</th>
<th>14</th>
<th>17</th>
<th>20</th>
<th>25</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Fettmenge</td>
<td>ca. [g]</td>
<td>5,5</td>
<td>10</td>
<td>16</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>ca. [cm³]</td>
<td>6</td>
<td>11</td>
<td>18</td>
<td>44</td>
</tr>
<tr>
<td>Zusätzlich erforderliche Fettmenge</td>
<td>ca. [g]</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>bei überwiegendem Einsatz mit oben liegendem Wave Generator</td>
<td>ca. [cm³]</td>
<td>3</td>
<td>5</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>Abmessungen (siehe Abb. 43.1)</td>
<td>s ca. [mm]</td>
<td>3</td>
<td>4</td>
<td>4,5</td>
<td>5,5</td>
</tr>
</tbody>
</table>

| Tabelle 41.2 |

<table>
<thead>
<tr>
<th>Bestellbezeichnung</th>
<th>Verfügbare Gebinde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spezialfett SK-1A, SK-2</td>
<td>0,5; 2,5; 16</td>
</tr>
<tr>
<td>Spezialfett 4BNo.2</td>
<td>0,5; 2; 16</td>
</tr>
<tr>
<td>Spezialfett Flexolub A1</td>
<td>1,0; 25</td>
</tr>
</tbody>
</table>
Die erforderliche Fettmenge ist neben der Baugröße auch von der Betriebsposition des Getriebes abhängig. Die im folgenden Text definierten Betriebspositionen „Wave Generator oben“ bzw. „Wave Generator unten“ beziehen sich auf die relative Lage des Wave Generators zum Flexspline Flansch, s. Abb. 42.2.

Betriebsposition mit überwiegend senkrecht stehendem oder unten liegendem Wave Generator
Die in Tabelle 42.1 definierte Standard Fettmenge ist für den Betrieb mit überwiegend senkrecht stehendem oder unten liegendem Wave Generator ausgelegt.

Betriebsposition mit überwiegend oben liegendem Wave Generator
Bei überwiegendem Einsatz mit oben liegendem Wave Generator ist eine zusätzliche Fettmenge oberhalb des Wave Generators zu plazieren, siehe Abb. 42.3 und Tabelle 42.1.

Abbildung 42.1

Abbildung 42.2

<table>
<thead>
<tr>
<th>Betriebspositionen</th>
<th>Wave Generator oben</th>
<th>Wave Generator senkrecht</th>
<th>Wave Generator unten</th>
</tr>
</thead>
</table>

Abbildung 42.3

Bei überwiegendem Einsatz mit oben liegendem Wave Generator ist diese zusätzliche Fettpufferung erforderlich.
5.6.2 Fettreservoir

Beim Einbau ist zu beachten, dass das Fettreservoir sowie Maß c und ø d aus Abb. 43.2 vollständig mit Fett zu füllen ist.

Tabelle 43.1

<table>
<thead>
<tr>
<th>Baugröße</th>
<th>14</th>
<th>17</th>
<th>20</th>
<th>25</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>ø a</td>
<td>38</td>
<td>45</td>
<td>53</td>
<td>66</td>
<td>86</td>
</tr>
<tr>
<td>b</td>
<td>17,1</td>
<td>19</td>
<td>20,5</td>
<td>23</td>
<td>26,8</td>
</tr>
<tr>
<td>c*</td>
<td>1</td>
<td>1</td>
<td>1,5</td>
<td>1,5</td>
<td>1,5</td>
</tr>
<tr>
<td>c**</td>
<td>3</td>
<td>3</td>
<td>4,5</td>
<td>4,5</td>
<td>4,5</td>
</tr>
<tr>
<td>ø d</td>
<td>16</td>
<td>26</td>
<td>30</td>
<td>37</td>
<td>37</td>
</tr>
</tbody>
</table>

c* Horizontal und Vertikal – Wave Generator unten

Abbildung 43.2

5.6.3 Fettwechsel

Für den Fettwechsel sollte das Getriebe vollständig ausgebaut und gereinigt werden. Neues Fett sollte in den Flexspline, das Wave Generator Kugellager, die Oldham Kupplung und in die Verzahnungsbereiche zwischen Circular Spline und Flexspline gefüllt werden.

Abbildung 43.3

Gleichung 43.4

\[L_{CT} = L_{CTH} \cdot \left(\frac{T_N}{T_{AV}} \right) \]

\(L_{CT} \) = Anzahl Wave Generator Umdrehungen bis zum Fettwechsel
\(L_{CTH} \) = siehe Diagramm
\(T_N \) = Nenndrehmoment
\(T_{AV} \) = Durchschnittliches Drehmoment
5.6.4 Ölschmierung

Ölmenge

Abbildung 44.1

<table>
<thead>
<tr>
<th>Betriebspositionen</th>
<th>Wave Generator oben</th>
<th>Wave Generator senkrecht</th>
<th>Wave Generator unten</th>
</tr>
</thead>
<tbody>
<tr>
<td>B = Ölstand</td>
<td>A = Ölstand</td>
<td>B = Ölstand</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 31.2 enthält Beispiele für Schmierstoffe bei besonderen Betriebsbedingungen. Im Einzelfall sind eventuell andere Schmierstoffe empfehlenswert. Bei der Auslegung für erweiterte Betriebstemperaturen müssen ggf. geänderte Grenzwerte berücksichtigt werden. Bitte wenden Sie sich an die Harmonic Drive AG.

<table>
<thead>
<tr>
<th>Tabelle 44.2</th>
<th>[l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baugröße</td>
<td>14</td>
</tr>
<tr>
<td>0,01</td>
<td>0,02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabelle 44.3</th>
<th>[mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baugröße</td>
<td>14</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgt der Einbau des Getriebes vertikal mit Wave Generator nach unten oder oben, so sind die Auswirkungen des Ölstandes auf die Planschverluste besonders zu beachten, da bereits geringe Ölstandänderungen die Planschverluste beeinflussen. Bei horizontalem Einbau sollte ein Ölstand entsprechend dem Maß A in Abb. 44.1 / Tabelle 44.3 und ein minimales Öl volumen entsprechend den Angaben in Tabelle 44.2 gewählt werden.
5.7 Vorbereitung

Vorbereitung zur Montage des Getriebes
Die Getriebemontage muss mit großer Sorgfalt und in sauberer Umgebung erfolgen. Es ist darauf zu achten, dass während der Montage keinerlei Fremdkörper in das Getriebe gelangen.

Allgemeine Hinweise
Um einen ausreichenden Reibungskoeffizienten zwischen den Oberflächen herzustellen, müssen die zu verschraubenden Flächen vor der Montage gereinigt, entfettet und getrocknet werden. Alle für die Übertragung des Abtriebsmomentes eingesetzten Schrauben müssen der Festigkeitsklasse 12.9 genügen und mit einem Drehmomenschlüssel angezogen werden. Sicherungselemente wie Unterlegscheiben oder Zahnscheiben dürfen nicht eingesetzt werden.

Montage-Hilfsstoffe

Flächendichtung
- Loctite 5203
- Loxeal 28-10
Empfohlen für alle Flanschflächen, falls keine O-Ring-Dichtung vorgesehen ist oder wenn keine ordnungsgemäße Abdichtung über dem O-Ring gewährleistet ist.

Schraubensicherung
- Loctite 243
Schwer lösbare und dichtend. Empfohlen für alle Schraubenverbindungen.

Montagepaste
- Klüber Q NB 50
Empfohlen für O-Ringe, die während der Montage aus ihrer Nut herausspringen können. Alle anderen O-Ringe sollten vor der Montage leicht mit dem im Getriebe befindlichen Fett eingestrichen werden.

Klebstoffe
- Loctite 638
Einsetzbar für geklebte, schwer lösbare Wellen-Naben-Verbindungen zwischen Motorwelle und Wave Generator. Bitte nur benutzen, wenn dies in der Bestätigungszeichnung vorgesehen ist.
5.8 Montage

Montageschritte
Die Vorgehensweise bei der Montage des Getriebes hängt stark von den konstruktiven Details ab. In dieser Montageanleitung werden daher ausschließlich Standardinformationen gegeben.

Grundsätzlich sollten zuerst Circular Spline (CS) und Flexspline (FS) montiert und fest verschraubt werden. Die Montage dieser beiden Komponenten kann in beliebiger Reihenfolge erfolgen. Der Wave Generator (WG) sollte zuletzt in die vormontierte Baugruppe FS/CS geschoben werden.

Falls die oben beschriebene Reihenfolge bei der Montage nicht eingehalten werden kann, fragen Sie bitte Harmonic Drive®, ob im konkreten Fall eine andere Reihenfolge zulässig ist.

Hinweis:

Tabelle 46.1

<table>
<thead>
<tr>
<th>Baugröße</th>
<th>14</th>
<th>17</th>
<th>20</th>
<th>25</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>ca. Ø Wave Generator</td>
<td>36</td>
<td>43</td>
<td>50</td>
<td>63</td>
<td>82</td>
</tr>
</tbody>
</table>

Abbildung 46.2
5.8.1 Montage des Circular Splines (CS)

Der Circular Spline darf während der Montage nicht deformiert werden. Es ist daher besonders wichtig, dass die kundenseitige Anschraubfläche des Circular Splines absolut eben ist und der kundenseitige Zentrierbund weder Klemmkräfte noch Spiel hervorruft.

Erläuterung:

Bei Fettschmierung ist die Circular Spline Verzahnung gem. 5.6 zu schmieren. Die Montage ist unter Beachtung von diesem Kapitel und Tabelle 47.1 durchzuführen.

Circular Spline Verschraubung

Tabelle 47.1

<table>
<thead>
<tr>
<th>Baugröße</th>
<th>14</th>
<th>17</th>
<th>20</th>
<th>25</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl der Schrauben</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Größe der Schrauben</td>
<td>M3</td>
<td>M3</td>
<td>M3</td>
<td>M4</td>
<td>M5</td>
</tr>
<tr>
<td>Teilkreisdurchmesser [mm]</td>
<td>44</td>
<td>54</td>
<td>62</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>Anzugsmoment der Schraube [Nm]</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
<td>5.1</td>
<td>10</td>
</tr>
<tr>
<td>Übertragbares Drehmoment [Nm]</td>
<td>110</td>
<td>130</td>
<td>150</td>
<td>315</td>
<td>690</td>
</tr>
</tbody>
</table>

5.8.2 Montage des Flexsplines (FS)

Den Flexspline gem. 5.6 schmieren und unter Beachtung von 43.1 und Tabelle 47.2 montieren. Dabei die mitgelieferte EKagrip® Scheibe zwischen Flexsplineboden und Abtriebselement platzieren, siehe 5.6.

Bei Ölschmierung und Betriebsposition „Wave Generator oben“ ist darauf zu achten, dass sich das Öl nicht im Flexspline sammelt. Bitte sprechen Sie uns an.

Flexspline Verschraubung

Tabelle 47.2

<table>
<thead>
<tr>
<th>Baugröße</th>
<th>14</th>
<th>17</th>
<th>20</th>
<th>25</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl der Schrauben</td>
<td>12</td>
<td>14</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Größe der Schrauben</td>
<td>M2,5</td>
<td>M2,5</td>
<td>M3</td>
<td>M4</td>
<td>M5</td>
</tr>
<tr>
<td>Teilkreisdurchmesser [mm]</td>
<td>18.9</td>
<td>23.1</td>
<td>27</td>
<td>33.6</td>
<td>44.9</td>
</tr>
<tr>
<td>Anzugsmoment der Schraube [Nm]</td>
<td>1,2</td>
<td>1,2</td>
<td>2,2</td>
<td>5,1</td>
<td>10</td>
</tr>
<tr>
<td>Übertragbares Drehmoment* [Nm]</td>
<td>95</td>
<td>135</td>
<td>200</td>
<td>446</td>
<td>952</td>
</tr>
</tbody>
</table>

* Reibungskoeffizient μ = 0,4 durch EKagrip® Scheibe
5.8.3 Montage des Wave Generators auf die Antriebswelle

Den Wave Generator vor oder nach der Montage auf die Antriebswelle gem. 5.6 schmieren. Bei der Montage ist das im Katalog/Bestätigungszeichnung angegebene axiale Montagemäß einzuhalten.

Tabelle 48.2

<table>
<thead>
<tr>
<th>Baugröße</th>
<th>14</th>
<th>17</th>
<th>20</th>
<th>25</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl der Schrauben</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Größe der Schrauben</td>
<td>M2</td>
<td>M2</td>
<td>M2,5</td>
<td>M3</td>
<td>M4</td>
</tr>
<tr>
<td>Anzugsmoment der Schraube [Nm]</td>
<td>0,6</td>
<td>0,6</td>
<td>1,23</td>
<td>2,15</td>
<td>5,1</td>
</tr>
</tbody>
</table>

Hinweis: Gültig für vollständig entfettete Anschlussflächen (Reibungskoeffizient $\mu_k = 0,15$) und Schraubenqualität 12.9. Schafftschrauben mit metrischem Regelgewinde nach DIN13 Teil 13 und Kopfabmessungen von Zylinderschrauben ISO 4762, unbehandelt, geölt, mit $\mu_{es}=0,12$.

5.8.4 Prüfung vor dem Fügen des Wave Generators

Prüfen, ob alle Getriebekomponenten gemäß 5.6 geschmiert sind. Bei Ölschmierung die in der Maschinenzeichnung vorgeschriebene Ölmenge einfüllen.

5.8.5 Fügen des Wave Generators in den Flexspline

Bei Fügen des Wave Generators in den Flexspline ist darauf zu achten, dass die Komponenten nicht verkantet sind. Durch paralleles Fügen wird sichergestellt, dass die Verzahnungen von Flexspline und Circular Spline in symmetrischen Eingriff kommen. Alternativ kann die Montage des Wave Generators bei langsam drehender Eingangswelle ($n < 10 \, 1/min$) erfolgen. Diese Vorgehensweise erleichtert die Montage.

5.8.6 Überprüfung der Montage

In sehr seltenen Fällen kann eine asymmetrische Montage (Dedoidal) vorkommen, s. Abb. 37.2. Der korrekte Zusammenbau kann wie folgt überprüft werden:

- Prüfen des Laufverhaltens durch Drehen an der Eingangswelle (bei Typen mit Eingangswelle).
 Alternativ: Drehen am Abtriebsflansch. Sehr deutlich spürbare Drehmomentschwankungen können Ihre Ursache in asymmetrischem Verzahnungsseingriff haben.
- Prüfen des Laufverhaltens und der Stromaufnahme bei drehendem Motor. Starke Schwingungen und große Schwan-
 kungen der Stromaufnahme, oder erhöhter Leerlaufstrom können Ihre Ursache in asymmetrischem Verzahnungsseingriff haben.

Bei falscher Montage (Dedoidal) wird das Getriebe nicht geschädigt, wenn der Fehler bereits durch die o. g. Prüfung erkannt wird. Der Fehler kann durch Demontage und eine erneute Montage behoben werden. Siehe auch Seiten 37 und 38.
6. Außerbetriebnahme und Entsorgung

Da Schmierstoffe (Fette und Öle) Gefahrstoffe sind und entsprechend den gültigen Gesundheitsschutzvorschriften behandelt werden sollten, empfehlen wir bei Bedarf das gültige Sicherheitsdatenblatt bei uns anzufordern.
7. Glossar

7.1 Technische Daten

Abstand R [mm]
Distanz zwischen Abtriebslager und Angriffspunkt der Last.

AC-Spannungskonstante $k_{EM} \frac{[V_{eff} / 1000 \text{min}^{-1}]}{1}$
Effektivwert der induzierten Motorklemmenspannung bei einer Drehzahl von 1000 min$^{-1}$ und einer Antriebstemperatur von 20 °C.

Baugröße

1) Antriebe/Getriebe mit Harmonic Drive® Getriebe oder Harmonic Planetengetriebe
Die Baugröße ist abgeleitet vom Teilkreisdurchmesser der Verzahnung in Zoll multipliziert mit 10.

2) Servomotor CHM
Die Baugröße bei den CHM Servomotoren beschreibt das Stillstandsdurehmoment in Ncm.

3) Direktantriebe TorkDrive®
Die Baugröße der Baureihe TorkDrive wird durch den Außendurchmesser des Eisenkerns im Stator beschrieben.

Bemessungsdrehmoment $T_N [Nm]$

Bemessungsdrehzahl $n_N [\text{min}^{-1}]$
Abtriebsdrehzahl, welche bei Belastung des Antriebs oder Motors mit Nenndrehmoment T_N kontinuierlich auftreten darf. Dabei muss der Antrieb oder Motor, abhängig von der Baugröße, auf eine definierte Kühlfläche montiert werden.

Bemessungsleistung $P_N [W]$
Abgegebene Leistung bei Bemessungsdrehzahl und Bemessungsdrehmoment.

Bemessungsspannung $U_N [V_{eff}]$
Anschlussspannung bei Betrieb mit Bemessungsdrehmoment und Bemessungsdrehzahl. Angegeben ist der Effektivwert der Leiterspannung.

Bemessungsstrom $I_N [A_{eff}]$
Effektivwert des sinusförmigen Stroms bei Belastung des Antriebs mit Bemessungsdrehmoment und Bemessungsdrehzahl.

Bremsenspannung $U_{Br} [VDC]$
Anschlussspannung der Haltebremse.

Drehmomentkonstante (Abtrieb) $k_{out} \frac{[Nm/A_{eff}]}{1}$
Quotient aus Stillstandsdurehmoment und Stillstandsstrom unter Berücksichtigung der Getriebeverluste.

Drehmomentkonstante (Motor) $k_{TM} \frac{[Nm/A_{eff}]}{1}$
Quotient aus Stillstandsdurehmoment und Stillstandsstrom.
Durchschnittsdrehmoment T_A [Nm]
Wird das Getriebe mit wechselnden Lasten beaufschlagt, so sollte das durchschnittliche Drehmoment berechnet werden. Dieser Wert sollte den angegebenen Grenzwert T_A nicht überschreiten.

Dynamische Axiallast $F_{A,dyn\,(max)}$ [N]
Bei rotierendem Lager maximal zulässige Axiallast, wobei keine zusätzlichen Kippmomente oder Radialkräfte wirken dürfen.

Dynamisches Kippmoment $M_{dyn\,(max)}$ [Nm]
Bei rotierendem Lager maximal zulässiges Kippmoment, wobei keine Axial- oder Radialkräfte wirken dürfen.

Dynamische Radiallast $F_{R,dyn\,(max)}$ [N]
Bei rotierendem Lager maximal zulässige Radiallast, wobei keine zusätzlichen Kippmomente oder Axialkräfte wirken dürfen.

Dynamische Tragzahl C [N]
Maß für die Last, die ein Abtriebslager aufnimmt, bevor es bei dynamischer Dauerbelastung unnötig schnell bleibenden Schaden erleidet.

Elektrische Zeitkonstante τ_e [s]
Die Zeitkonstante gibt an, in welcher Zeit der Strom 63 % des maximal möglichen Wertes bei konstanter Klemmenspannung erreicht.

Entmagnetisierungsstrom I_e [A_{eff}]
Beginn der Entmagnetisierung der Rotormagnete.

Gewicht m [kg]
Das im Katalog angegebene Gewicht ist das Nettogewicht ohne Verpackung und gilt nur für Standardausführungen.

Haltemoment der Bremse T_{Br} [Nm]
Drehmoment, bezogen auf den Abtrieb, das der Antrieb bei geschlossener Bremse halten kann.

Haltestrom der Bremse I_{Br} [A_{dc}]
Strom zum Halten der Bremse.

Hohlwellendurchmesser d_H [mm]
Freier Innendurchmesser der axialen durchgängigen Hohlwelle.

Induktivität (L-L) $L_{LL\,-\,L}$ [mH]
Berechnete Anschlussinduktivität ohne Berücksichtigung der magnetischen Sättigung der Motoraktivteile.

Kippsteifigkeit K_B [Nm/arcmin]
Beschreibt das Verhältnis zwischen anliegendem Kippmoment und dem Kippwinkel am Abtriebslager.

Kollisionsdrehmoment T_M [Nm]
Im Falle einer Not-Ausschaltung oder einer Kollision kann das Harmonic Drive® Getriebe mit einem kurzzeitigen Kollisionsdrehmoment beaufschlagt werden. Die Anzahl und die Höhe dieses Kollisionsdrehmomentes sollten möglichst gering sein. Unter keinen Umständen sollte das Kollisionsdrehmoment während des normalen Arbeitszyklus erreicht werden.
Lost Motion (Harmonic Drive® Getriebe) [arcmin]
Harmonic Drive® Getriebe weisen kein Spiel in der Verzahnung auf. Der Begriff Lost Motion wird verwendet, um die Torsionssteifigkeit im Bereich kleiner Drehmomente zu charakterisieren.

Das Bild zeigt den Verdrehwinkel φ in Abhängigkeit des anliegenden Abtriebsdrehmomentes als Hysteresekurve bei fixiertem Wave Generator. Die Lost Motion Messung wird mit einem Abtriebsdrehmoment von ca. $\pm 4\%$ des Nenndrehmomentes des Getriebes durchgeführt.

Massenträgheitsmoment $J [\text{kgm}^2]$
Massenträgheitsmoment des Rotors.

Massenträgheitsmoment $J_{\text{in}} [\text{kgm}^2]$
Das im Katalog angegebene Massenträgheitsmoment des Getriebes bezieht sich auf den Getriebeeingang.

Massenträgheitsmoment $J_{\text{out}} [\text{kgm}^2]$
Massenträgheitsmoment bezogen auf den Abtrieb.

Maximale Antriebsdrehzahl (Fettschmierung) $n_{\text{in (max)}} [\text{min}^{-1}]$
Maximal zulässige Getriebeeingangs drehzahl bei Fettschmierung.

Maximale Antriebsdrehzahl (Ölschmierung) $n_{\text{in (max)}} [\text{min}^{-1}]$
Maximal zulässige Getriebeeingangs drehzahl bei Ölschmierung.

Maximale Drehzahl $n_{\text{max}} [\text{min}^{-1}]$

Maximales Drehmoment $T_{\text{max}} [\text{Nm}]$

Maximaler Hohlwellendurchmesser $d_{H (\text{max})} [\text{mm}]$
Bei Getrieben mit Hohlwelle gibt dieser Wert den maximalen Durchmesser der axialen Hohlwelle an.

Maximale Leistung $P_{\text{max}} [\text{W}]$
Maximale abgegebene Leistung.

Maximale stationäre Zwischenkreisspannung $U_{\text{DC (max)}} [\text{VDC}]$
Gibt die für den bestimmungsgemäß Betrieb des Antriebes maximal zulässige stationäre Zwischenkreisspannung an. Während des Bremsbetriebes kann diese kurzfristig überschritten werden.
Maximalstrom I_{max} [A]
Der Maximalstrom ist der kurzzeitig zulässige Strom.

Mechanische Zeitkonstante τ_m [s]
Die Zeitkonstante gibt an, in welcher Zeit die Drehzahl 63 % des maximal möglichen Wertes bei konstanter Klemmspannung ohne Last erreicht.

Mittlere Antriebsdrehzahl (Fettschmierung) $n_{av(max)}$ [min⁻¹]
Maximal zulässige durchschnittliche Getriebeeingangsduerzahl bei Fettschmierung.

Mittlere Antriebsdrehzahl (Ölschmierung) $n_{av(max)}$ [min⁻¹]
Maximal zulässige durchschnittliche Getriebeeingangsduerzahl bei Ölschmierung.

Motor Bemessungsdrehzahl n_N [min⁻¹]
Drehzahl, welche bei Belastung des Motors mit Nenndrehmoment T_N kontinuierlich auftreten darf. Dabei muss der Motor, abhängig von der Baugröße, auf eine definierte Kühfläche montiert werden.

Motorklemmspannung (nur Grundwelle) U_M [V eff]

Motor maximale Drehzahl n_{max} [min⁻¹]
Die maximal zulässige Motordrehzahl.

Nenndrehmoment T_N [Nm]
Das Nenndrehmoment ist ein Referenzdrehmoment für die Berechnung der Getrieblebensdauer. Bei Belastung mit dem Nenndrehmoment und der Nenndrehzahl erreicht das Getriebe die mittlere Lebensdauer L_{50}.
Das Nenndrehmoment T_N wird nicht für die Dimensionierung angewendet.

Nenndrehzahl n_N [min⁻¹], Mechanik
Die Nenndrehzahl ist eine Referenzdrehzahl für die Berechnung der Getrieblebensdauer. Bei Belastung mit dem Nenndrehmoment und der Nenndrehzahl erreicht das Getriebe die mittlere Lebensdauer L_{50}. Die Nenndrehzahl n_N wird nicht für die Dimensionierung angewendet.

<table>
<thead>
<tr>
<th>Produktreihe</th>
<th>n_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>CobaltLine®, HFUC, HFUS, CSF, CSG, CSD, SHG, SHD</td>
<td>2000</td>
</tr>
<tr>
<td>PMG Baugröße 5</td>
<td>4500</td>
</tr>
<tr>
<td>PMG Baugröße 8 bis 14</td>
<td>3500</td>
</tr>
<tr>
<td>HPG, HPGP, HPN</td>
<td>3000</td>
</tr>
</tbody>
</table>

Öffnungsstrom der Bremse I_{OBr} [A DC]
Strom zum Öffnen der Bremse.

Öffnungszeit der Bremse t_0 [ms]
Verzögerungszeit zum Öffnen der Bremse.
Polpaarzahl \(p \) []
Anzahl der Paare von magnetischen Polen innerhalb von rotierenden elektrischen Maschinen.

Schließzeit der Bremse \(t_C \) [ms]
Verzögerungszeit zum Schließen der Bremse.

Schutzart IP
Die Schutzart nach EN 60034-5 gibt die Eignung für verschiedene Umgebungsbedingungen an.

Spiel (Beschreibung mittels Hysteresekurve) [arcmin]
Harmonic Planetengetriebe zeigen bei Beaufschlagung mit einem Nenndrehmoment die in der Hysteresekurve dargestellte Charakteristik. Zur Ermittlung der Hysteresekurve wird bei blockierter Eingangswelle ein Drehmoment an der Abtriebswelle eingeleitet.

Ausgehend von Punkt O, werden nacheinander die Punkte A-B-A'-B'-A angefahren (siehe Abbildung). Der Betrag B-B' wird als Spiel (oder Hystereseverlust) bezeichnet.

Statische Tragzahl \(C_0 \) [N]
Maß für die Last, die ein Abtriebslager aufnimmt, bevor es bei statischer Belastung unnötig schnell bleibenden Schaden erleidet.

Statisches Kippmoment \(M_0 \) [Nm]
Bei stillstehendem Lager maximal zulässiges Kippmoment, wobei keine Axial- oder Radialkräfte wirken dürfen.

Stillstandsdrehmoment \(T_0 \) [Nm]
Zulässiges Drehmoment bei stillstehendem Antrieb.

Stillstandsstrom \(I_0 \) [Aeff]
Effektivwert des Motorstrangstroms zur Erzeugung des Stillstandsdrehmomentes.

Teilkreisdurchmesser \(d_p \) [mm]
Teilkreisdurchmesser des Abtriebslagers.

Torsionssteifigkeit (Harmonic Drive® Getriebe) \(K_3 \) [Nm/rad]
Das Maß der elastischen Verdrehung am Abtrieb bei einem bestimmten Drehmoment und blockiertem Wave Generator. Die Torsionssteifigkeit \(K_3 \) beschreibt die Steifigkeit oberhalb eines definierten Referenzdrehmomentes. In diesem Bereich ist die Steifigkeit nahezu linear.

Der angegebene Wert für die Torsionssteifigkeit \(K_3 \) ist ein Durchschnittswert, der während zahlreicher Tests ermittelt wurde. Die Grenzdrehmomente \(T_1 \) und \(T_2 \), sowie Hinweise zur Berechnung des Gesamtverdrehwinkels sind in Kapitel 3 und 4 dieser Dokumentation zu finden.
Torsionssteifigkeit
(Harmonic Planetengetriebe) \(K_T \) [Nm/rad]
Das Maß der elastischen Verdrehung am Abtrieb bei einem bestimmten Drehmoment und blockierter Eingangswelle. Die Torsionssteifigkeit der Harmonic Planetengetriebe beschreibt die Verdrehung des Abtriebes oberhalb einem Referenzdrehmoment von 15 % des Nenndrehmomentes. In diesem Bereich ist die Torsionssteifigkeit nahezu linear.

Umgebungstemperatur (Betrieb) \([\degree C]\)
Gibt den für den bestimmungsgemäßen Betrieb zulässigen Temperaturbereich an.

Untersetzung \(i \) []
Die Untersetzung ist das Verhältnis von Antriebsdrehzahl zu Abtriebsdrehzahl.

Hinweis für Harmonic Drive® Getriebe: Bei der Standardausführung ist der Wave Generator das Antriebselement, der Flexspline das Abtriebselement und der Circular Spline am Gehäuse fixiert. Da sich die Drehrichtung von Antrieb (Wave Generator) zu Abtrieb (Flexspline) umkehrt, ergibt sich eine negative Untersetzung für Berechnungen, bei denen die Drehrichtung berücksichtigt werden muss.

Übertragungsgenauigkeit [arcmin]

Wiederholbares Spitzendrehmoment \(T_R \) [Nm]
Gibt die maximal zulässigen Beschleunigungs- und Bremsdrehmomente an. Während des normalen Arbeitszyklus sollte das wiederholbare Spitzendrehmoment \(T_R \) nicht überschritten werden.
Wiederholgenauigkeit [arcmin]
Die Wiederholgenauigkeit eines Getriebes beschreibt die Positionsabweichung, die beim wiederholten Anfahren eines Sollwertes aus jeweils der gleichen Drehrichtung auftritt. Die Wiederholgenauigkeit ist definiert als die Hälfte der maximalen Abweichung, versehen mit einem ± Zeichen.

\[\text{Wiederholgenauigkeit} = \pm \frac{x}{2} \]

Widerstand (L-L, 20 °C) \(R_{L-L} \) [Ω]

7.2 Kennzeichnung, Richtlinien und Verordnungen

CE-Kennzeichnung
Mit der CE-Kennzeichnung erklärt der Hersteller oder EU-Importeur gemäß EU-Verordnung, dass das Produkt den geltenden Anforderungen, die in den Harmonisierungsrechtsvorschriften der Gemeinschaft über ihre Anbringung festgelegt sind, genügt.

REACH-Verordnung
Die REACH-Verordnung ist eine EU-Chemikalienverordnung. REACH steht für Registration, Evaluation, Authorisation and Restriction of Chemicals, also für die Registrierung, Bewertung, Zulassung und Beschränkung von Chemikalien.

RoHS EG-Richtlinie
Die RoHS EG-Richtlinie zur Beschränkung der Verwendung bestimmter gefährlicher Stoffe in Elektro- und Elektronikgeräten regelt die Verwendung von Gefahrstoffen in Geräten und Bauteilen.