Projektierungsanleitung AC Servoantriebe FPA

<u>Inhalt</u>

1.	Allgemeines	
1.1	Erläuterung der verwendeten Symbolik	
1.2	Haftungsausschluss und Copyright	04
2.	Sicherheits- und Inbetriebnahmehinweise	N5
2.1	Gefahren	
2.2	Bestimmungsgemäße Verwendung	
2.3	Nicht bestimmungsgemäße Verwendung	
2.4	Konformitätserklärung	
3.	Technische Beschreibung	08
3.1	Produktbeschreibung	
3.2	Bestellbezeichnung	09
3.3	Technische Daten	
	3.3.1 Allgemeine technische Daten	
	3.3.2 Antriebsdaten	
	3.3.3 Abmessungen	
	3.3.4 Genauigkeit	
	3.3.5 Torsionssteifigkeit	
	3.3.6 Abtriebslager	
	3.3.7 Motorfeedbacksysteme	
	3.3.9 Elektrische Anschlüsse	
	J.J.J EICKITSCHE AITSCHIU33C	Δ)
4.	Antriebsauslegung	32
4.1	Auswahlschema und Auslegungsbeispiel	32
4.2	Ermittlung des Torsionswinkels	
4.3	Abtriebslager	
	4.3.1 Lebensdauer	
	4.3.2 Kippwinkel	39
5.	Installation und Betrieb	
5.1	Transport und Lagerung	
5.2	Aufstellung	
5.3	Mechanische Installation	
5.4	Elektrische Installation	
5.5	Inbetriebnahme	
5.6	ÜberlastschutzSchutz gegen Korrosion und das Eindringen von Fremdkörpern	
5.7 5.8	Schutz gegen Korrosion und das Eindringen von Fremakorpern Stillsetzen und Wartung	
5.0	Stillsetzen und vvaltung	45
6.	Außerbetriebnahme und Entsorgung	45
7.	Glossar	47
7.1	Technische Daten	
7.2	Kennzeichnung, Richtlinien und Verordnungen	
8.	Anhang	54
8.1	Konformitätserklärung	

1. Allgemeines

Über diese Dokumentation

Die vorliegende Dokumentation beinhaltet Sicherheitsvorschriften, technische Daten und Betriebsvorschriften für Servoantriebe und Servomotoren der Harmonic Drive AG.

Die Dokumentation wendet sich an Planer, Projekteure, Maschinenhersteller und Inbetriebnehmer. Sie unterstützt bei Auswahl und Berechnung der Servoantriebe und Servomotoren sowie des Zubehörs.

Hinweise zur Aufbewahrung

Bitte bewahren Sie diese Dokumentation während der gesamten Einsatz- bzw. Lebensdauer bis zur Entsorgung des Produktes auf. Geben Sie bei Verkauf diese Dokumentation weiter.

Weiterführende Dokumentation

Zur Projektierung von Antriebssystemen mit Antrieben und Motoren der Harmonic Drive AG benötigen Sie nach Bedarf weitere Dokumentationen, entsprechend der eingesetzten Geräte. Die Harmonic Drive AG stellt für ihre Produkte die gesamte Dokumentation auf ihrer Website im PDF-Format zur Verfügung.

www.harmonicdrive.de

Fremdsysteme

Dokumentationen für externe, mit Harmonic Drive® Komponenten verbundene Systeme sind nicht Bestandteil des Lieferumfanges und müssen von diesen Herstellern direkt angefordert werden.

Vor der Inbetriebnahme der Servoantriebe und Servomotoren der Harmonic Drive AG an Regelgeräten ist die spezifische Inbetriebnahmedokumentation des jeweiligen Gerätes zu beachten.

Ihr Feedback

Ihre Erfahrungen sind für uns wichtig. Verbesserungsvorschläge und Anmerkungen zu Produkt und Dokumentation senden Sie bitte an:

Harmonic Drive AG Marketing und Kommunikation Hoenbergstraße 14 65555 Limburg / Lahn E-Mail: info@harmonicdrive.de

1.1 Erläuterung der verwendeten Symbolik

Symbol	Bedeutung
<u> </u>	Bezeichnet eine unmittelbar drohende Gefahr. Wenn sie nicht gemieden wird, sind Tod oder schwerste Verletzungen die Folge.
⚠ WARNUNG	Bezeichnet eine möglicherweise drohende Gefahr. Wenn sie nicht gemieden wird, können Tod oder schwerste Verletzungen die Folge sein.
⚠ VORSICHT	Bezeichnet eine möglicherweise drohende Gefahr. Wenn sie nicht gemieden wird, können leichte oder geringfügige Verletzungen die Folge sein.
HINWEIS	Bezeichnet eine möglicherweise schädliche Situation. Wenn sie nicht gemieden wird, kann die Anlage oder etwas in ihrer Umgebung beschädigt werden.
INFO	Dies ist kein Sicherheitssymbol. Das Symbol weist auf wichtige Informationen hin.
	Warnung vor einer Gefahr (allgemein). Die Art der Gefahr wird durch den nebenstehenden Warntext spezifiziert.
	Warnung vor gefährlicher elektrischer Spannung und deren Wirkung.
	Warnung vor heißer Oberfläche.
	Warnung vor hängenden Lasten.
	Vorsichtsmaßnahmen bei der Handhabung elektrostatisch empfindlicher Bauelemente beachten.

1.2 Haftungsausschluss und Copyright

Die in diesem Dokument enthaltenen Inhalte, Bilder und Grafiken sind urheberrechtlich geschützt. Logos, Schriften, Firmen und Produktbezeichnungen können, über das Urheberrecht hinaus, auch marken- bzw. warenzeichenrechtlich geschützt sein. Die Verwendung von Texten, Auszügen oder Grafiken bedarf der Zustimmung des Herausgebers bzw. Rechteinhabers.

Wir haben den Inhalt der Druckschrift geprüft. Dennoch können Abweichungen nicht ausgeschlossen werden, so dass wir für die vollständige Übereinstimmung keine Gewähr übernehmen. Die Angaben in dieser Druckschrift werden regelmäßig überprüft, und notwendige Korrekturen sind in den nachfolgenden Auflagen enthalten. Für Verbesserungsvorschläge sind wir dankbar.

2. Sicherheits- und Inbetriebnahmehinweise

Zu beachten sind die Angaben und Anweisungen in diesem Dokument sowie im Katalog. Sonderausführungen können in technischen Details von den nachfolgenden Ausführungen abweichen! Bei eventuellen Unklarheiten wird dringend empfohlen, unter Angabe von Typbezeichnung und Seriennummer, beim Hersteller anzufragen.

2.1 Gefahren

Elektrische Servoantriebe und Motoren haben gefährliche, spannungsführende und rotierende Teile. Alle Arbeiten während dem Anschluss, der Inbetriebnahme, der Instandsetzung und der Entsorgung sind nur von qualifiziertem Fachpersonal auszuführen. EN 50110-1 und IEC 60364 beachten!

Vor Beginn jeder Arbeit, besonders aber vor dem Öffnen von Abdeckungen, muss der Antrieb vorschriftsmäßig freigeschaltet sein. Neben den Hauptstromkreisen ist dabei auch auf eventuell vorhandene Hilfsstromkreise zu achten.

Einhalten der fünf Sicherheitsregeln:

- Freischalten
- Gegen Wiedereinschalten sichern
- Spannungsfreiheit feststellen
- Erden und kurzschließen
- Benachbarte unter Spannung stehende Teile abdecken oder abschranken

Die zuvor genannten Maßnahmen dürfen erst dann zurückgenommen werden, wenn die Arbeiten abgeschlossen sind und der Antrieb vollständig montiert ist. Unsachgemäßes Verhalten kann Personen- und Sachschäden verursachen. Die jeweils geltenden nationalen, örtlichen und anlagespezifischen Bestimmungen und Erfordernisse sind zu gewährleisten.

Die Oberflächentemperatur der Antriebe kann im Betrieb über 55 °C betragen! Die heißen Oberflächen dürfen nicht berührt werden!

HINWEIS

Anschlusskabel dürfen nicht in direkten Kontakt mit heißen Oberflächen kommen.

Betriebsbedingt auftretende elektrische, magnetische und elektromagnetische Felder stellen im Besonderen für Personen mit Herzschrittmachern, Implantaten oder ähnlichem eine Gefährdung dar. Gefährdete Personengruppen dürfen sich daher nicht in unmittelbarer Nähe des Produktes aufhalten.

Eingebaute Haltebremsen sind nicht funktional sicher. Insbesondere bei hängender Last kann die funktionale Sicherheit nur mit einer zusätzlichen externen mechanischen Bremse erreicht werden.

Der einwandfreie und sichere Betrieb der Servoantriebe und Motoren setzt einen sachgemäßen Transport, fachgerechte Lagerung, Aufstellung und Montage sowie eine sorgfältige Bedienung und Wartung voraus.

HINWEIS

Bewegen und heben Sie Servoantriebe und Motoren mit einem Gewicht >20 kg ausschließlich mit dafür geeigneten Hebevorrichtungen.

INFO

Sondervarianten der Servoantriebe und Motoren können in ihrer Spezifikation vom Standard abweichen. Mitgeltende Angaben aus Datenblättern, Katalogen und Angeboten der Sondervarianten sind zu berücksichtigen.

2.2 Bestimmungsgemäße Verwendung

Die Harmonic Drive® Servoantriebe und Motoren sind für industrielle oder gewerbliche Anwendungen bestimmt. Sie entsprechen den relevanten Teilen der harmonisierten Normenreihe EN 60034. Falls im Sonderfall, beim Einsatz in nicht industriellen oder nicht gewerblichen Anlagen, erhöhte Anforderungen gestellt werden, so sind diese Bedingungen bei der Aufstellung anlagenseitig zu gewährleisten.

Typische Anwendungsbereiche sind Robotik und Handhabung, Werkzeugmaschinen, Verpackungs- und Lebensmittelmaschinen und ähnliche Maschinen.

Die Servoantriebe und Motoren dürfen nur innerhalb der in der Dokumentation angegebenen Betriebsbereiche und Umweltbedingungen (Aufstellhöhe, Schutzart, Temperaturbereich usw.) betrieben werden.

Vor Inbetriebnahme von Anlagen und Maschinen, in welche Harmonic Drive® Servoantriebe und Motoren eingebaut werden, ist die Konformität der Anlage oder Maschine zur Maschinenrichtlinie, Niederspannungsrichtlinie und EMV-Richtlinie herzustellen.

Anlagen und Maschinen mit umrichtergespeisten Drehstrommotoren müssen den Schutzanforderungen der EMV-Richtlinie genügen. Die Durchführung der sachgerechten Installation liegt in der Verantwortung des Anlageerrichters. Signal- und Leistungsleitungen sind geschirmt auszuführen. Die EMV-Hinweise des Umrichterherstellers zur EMV gerechten Installation sind zu beachten.

6 1015765 11/2015 V01

2.3 Nicht bestimmungsgemäße Verwendung

Die Verwendung der Servoantriebe und Motoren außerhalb der vorgenannten Anwendungsbereiche oder unter anderen als in der Dokumentation beschriebenen Betriebsbereichen und Umweltbedingungen gilt als nicht bestimmungsgemäßer Betrieb.

HINWEIS

Ein direkter Betrieb am Netz ist untersagt.

Nachfolgende Anwendungsbereiche gehören zur nicht bestimmungsgemäßen Verwendung:

- · Luft- und Raumfahrt
- Explosionsgefährdete Bereiche
- Speziell für eine nukleare Verwendung konstruierte oder eingesetzte Maschinen, deren Ausfall zu einer Emission von Radioaktivität führen kann
- Vakuum
- Geräte für den häuslichen Gebrauch
- Medizinische Geräte, die in direkten Kontakt mit dem menschlichen Körper kommen
- Maschinen oder Geräte zum Transport und Heben von Personen
- Spezielle Einrichtungen für die Verwendung auf Jahrmärkten und in Vergnügungsparks

2.4 Konformitätserklärung

Für die in der Projektierungsanleitung beschriebenen Harmonic Drive® Servoantriebe und Motoren besteht Konformität mit der Niederspannungsrichtlinie 2006/95/EG. Eine Kopie der EG-Konformitätserklärung ist im Anhang. Gemäß der EG-Maschinenrichtlinie 2006/42/EG Artikel 1 sind die Harmonic Drive® Servoantriebe und Servomotoren elektrische Betriebsmittel zur Verwendung innerhalb bestimmter Spannungsgrenzen nach Niederspannungsrichtlinie 2006/95/EG und somit vom Anwendungsbereich der EG-Maschinenrichtlinie ausgenommen. Die Inbetriebnahme ist so lange untersagt, bis die Konformität des Endproduktes mit der EG-Maschinenrichtlinie festgestellt ist.

3. Technische Beschreibung

3.1 Produktbeschreibung

Permanent Precision® für Servoantriebe

Die Servoantriebe der Baureihe FPA kombinieren einen Synchron-Servomotor und ein Harmonic Planetengetriebe der Baureihe HPG zu einer hochdynamischen Einheit. Erhältlich in vier Baugrößen mit fünf Untersetzungen zwischen 9 und 45 bieten die Antriebe maximale Drehmomente von 4 bis 300 Nm. Durch das kippsteife Abtriebslager können die Antriebe hohe Lasten einfach aufnehmen und präzise führen.

Zur Anpassung an Ihre konkrete Anwendung bietet die Baureihe FPA zahlreiche Kombinationsmöglichkeiten.

Mit dem Servoregler der Baureihe YukonDrive®, der speziell auf die Bedürfnisse der Harmonic Drive® Servoantriebe abgestimmt ist, steht ein vorkonfiguriertes Antriebssystem aus einer Hand zur Verfügung – und das selbstverständlich in spezifischer Ausführung maßgeschneidert für Ihre Anwendung. Die Flexibilität in der Konfiguration ermöglicht außerdem die Kompatibilität zu fast allen Servoreglern auf dem Markt.

Die Antriebe der Baureihe FPA garantieren stabile Maschineneigenschaften bei kurzen Taktzeiten.

8 1015765 11/2015 VO

3.2 Bestellbezeichnung

Tabelle 9.1

Baureihe	Baugröße Version		Unt	tersetz	ung		Motorwicklung und Stecker- konfiguration	Motorfeed- backsystem	Bremse	Sonderausführung
	11A	9	21		37	45		RES E2048 M2048		
FPA	14		21	33			Н		В	Nach Kunden- anforderung
FFA	20B		21	33						
	32B		21	33				RES		
Bestellbezeichnung										

SP FPA 20B Н E2048 В 21

Tabelle 9.2

Motorwicklung						
Baugröße Version	Bestellbezeichnung	Maximale stationäre Zwischenkreisspannung				
11A						
14		COOVE				
20B	Н	680 VDC				
32B						

Tabelle 9.3

Steckerkonfiguration							
Bestellbezeichnung	Motor	Motorfeed	backsystem				
		RES	E2048 M2048				
Н	6 pol. (M23)	12 pol. (M23)	17 pol. (M23)				

Tabelle 9.4

Motorfeedbacksystem					
Bestellbezeichnung	Тур	Protokoll			
E2048	Inkrementell	-			
M2048	Multiturn Absolut	EnDat®			
RES	Resolver	-			

9 1015765 11/2015 V01

Erläuterungen zu den technischen Daten finden Sie im Kapitel "Glossar"

Kombinationen

Tabelle 10.1

Baugröße Version		11A	14	20B	32B
	9	•	-	-	-
	21	•	•	•	•
Untersetzung	33	-	•	•	•
	37	•	-	-	-
	45	•	0	0	0
Motorwicklung und Steckerkonfiguration	Н	•	•	•	•
	RES	•	•	•	•
Motorfeedbacksystem	E2048	-	•	•	•
	M2048	-	•	•	•
Bremse	В	-	•	•	•

verfügbar

o auf Anfrage

- nicht verfügbar

3.3 Technische Daten

3.3.1 Allgemeine technische Daten

Tabelle 11.1

Isolationsklasse (EN 60034-1)		F
Isolationsspannung (10s)	$V_{\rm eff}$	2500
Schmierung		Harmonic Drive® SK-2 (FPA-11: EpnocAP(N)2)
Schutzart (EN 60034-5)		IP65
Umgebungstemperatur Betrieb	°C	0 40
Umgebungstemperatur Lagerung	°C	-20 60
Aufstellhöhe (ü. NN)	m	< 1000
Relative Luftfeuchte (ohne Kondensation)	%	20 80
Vibrationsbeständigkeit (DIN IEC 68 Teil 2-6, 10 500 Hz)	g	2,5
Schockfestigkeit (DIN IEC 68 Teil 2-27, 18 ms)	g	30
Temperatursensoren		1 x KTY 84-130

Alle technischen Daten gelten für Antriebe im thermischen Beharrungszustand und montiert auf Aluminiumplatte mit folgenden Abmessungen:

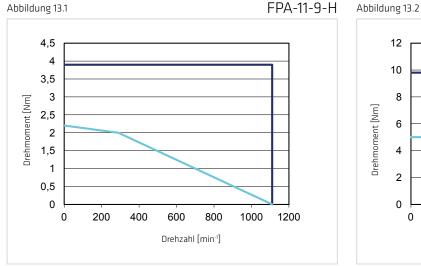
Tabelle 11.2

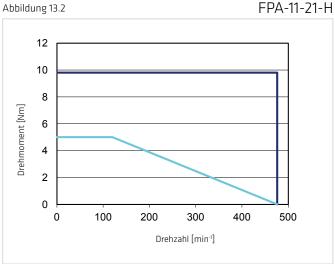
Baureihe	Baugröße Version	Einheit	Abmessung
EDA III	11A	[mm]	230 x 230 x 7
	14	[mm]	250 x 250 x 12
FPA-H	20B	[mm]	350 x 350 x 18
	32B	[mm]	400 x 400 x 20

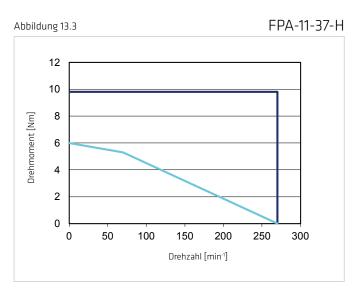
3.3.2 Antriebsdaten

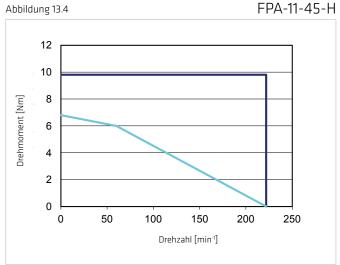
Tabelle 12.1

	Symbol [Einheit]		FPA-	11A-H	
Untersetzung	i[]	9	21	37	45
Maximales Drehmoment	T _{max} [Nm]	3,9	9,8	9,8	9,8
Maximale Drehzahl	n _{max} [min ⁻¹]	1111	476	270	222
Maximalstrom	I _{max} [A _{eff}]	1,2	1,3	0,6	0,5
Stillstandsdrehmoment	T _o [Nm]	2,3	5,3	5,9	7,2
Stillstandstrom	I ₀ [A _{eff}]	0,7	0,7	0,4	0,4
Maximale stationäre Zwischenkreisspannung	$U_{DCmax}\left[V_{DC}\right]$	680			
Elektrische Zeitkonstante (20°C)	t _e [ms]	0,2			
Mechanische Zeitkonstante (20°C)	t _m [ms]	4,0 7,0			.0
Leerlaufstrom (bei Bemessungsdrehzahl)	I _{NL} [A _{eff}]	0,	11	0,	07
Drehmomentkonstante (Abtrieb)	k _{Tout} [Nm/A _{eff}]	3,2	7,4	15,5	18,9
Drehmomentkonstante (Motor)	k _{TM} [Nm/A _{eff}]	0,	35	0,	42
AC-Spannungskonstante (L-L, 20°C, Motor)	k _{EM} [V _{eff} /1000 min ⁻¹]	2	1	2	6
Motorklemmenspannung (nur Grundwelle)	U _M [V _{eff}]		4:	30	
Motor maximale Drehzahl	n _{max} [min ⁻¹]		100	000	
Motor Bemessungsdrehzahl	n _N [min ⁻¹]		25	00	
Widerstand (L-L, +20°C)	$R_{\scriptscriptstyleL\!-\!L}[\Omega]$	34	1,9	88	3,0
Induktivität (L-L)	L _{L-L} [mH]	7,	8	18	3,6
Polpaarzahl	p[]		=	3	
Gewicht ohne Bremse	m [kg]		0	,7	


Massenträgheitsmomente


Tabelle 12.1


	Symbol [Einheit]	FPA-11A-H				
Untersetzung	i[]	9	21	37	45	
Massenträgheitsmomente abtriebsseitig						
Massenträgheitsmoment ohne Bremse	J _{out} [kgm²]	0,0007	0,0037	0,0114	0,0168	
Massenträgheitsmomente motorseitig						
Massenträgheitsmoment motorseitig ohne Bremse	J [x10 ⁻⁴ kgm²]	0,08				


Leistungscharakteristik

Die dargestellten Leistungskurven sind gültig für die spezifizierte Umgebungstemperatur (Betrieb) und sofern die Motorklemmenspannung mindestens dem in der Tabelle Technische Daten genannten Wert entspricht.

Legende

Tabelle 14.1

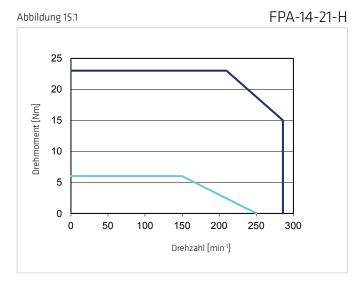
	Symbol [Einheit]	FPA-14-H		
Untersetzung	i[]	21	33	
Maximales Drehmoment	T _{max} [Nm]	23	23	
Maximale Drehzahl	n _{max} [min ⁻¹]	286	182	
Maximalstrom	I _{max} [A _{eff}]	2,7	1,6	
Stillstandsdrehmoment	T _o [Nm]	6	10	
Stillstandstrom	I ₀ [A _{eff}]	0,	75	
Maximale stationäre Zwischenkreisspannung	U _{DCmax} [V _{DC}]	680		
Elektrische Zeitkonstante (20°C)	t _e [ms]	0,8		
Mechanische Zeitkonstante (20°C)	t _m [ms]	12,0		
Leerlaufstrom (bei Bemessungsdrehzahl)	I _{NL} [A _{eff}]	0,2		
Drehmomentkonstante (Abtrieb)	k _{Tout} [Nm/A _{eff}]	9,8	15,4	
Drehmomentkonstante (Motor)	k _{TM} [Nm/A _{eff}]	0,	55	
AC-Spannungskonstante (L-L, 20°C, Motor)	k _{EM} [V _{eff} /1000 min ⁻¹]	4	15	
Motorklemmenspannung (nur Grundwelle)	U _M [V _{eff}]	4:	30	
Motor maximale Drehzahl	n _{max} [min ⁻¹]	60	100	
Motor Bemessungsdrehzahl	n _N [min ⁻¹]	30	000	
Widerstand (L-L, +20°C)	$R_{LL}[\Omega]$	67		
Induktivität (L-L)	L _{L-L} [mH]	56		
Polpaarzahl	p[]	3		
Gewicht ohne Bremse	m [kg]	2		
Gewicht mit Bremse	m [kg]	2	,2	

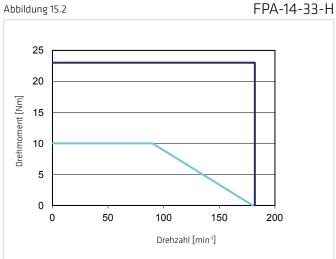
Massenträgheitsmomente

Tabelle 14.2

	Symbol [Einheit]	FPA-14-H			
Untersetzung	i[]	21 33			
Massenträgheitsmomente abtriebsseitig					
Massenträgheitsmoment ohne Bremse	J _{out} [kgm²]	0,012	0,030		
Massenträgheitsmoment mit Bremse	J _{out} [kgm²]	0,015 0,036			
Massenträgheitsmomente motorseitig					
Massenträgheitsmoment motorseitig ohne Bremse	J [10⁻⁴ kgm²]	0,27 0,26			
Massenträgheitsmoment mit Bremse	J [10 ⁻⁴ kgm ²]	0,34	0,33		

Technische Daten Motorbremse


Tabelle 14.3


	Symbol [Einheit]	FPA-14-H		
Untersetzung	i []	21	33	
Bremsenspannung	U _{Br} [V _{DC}]	24 ±10%		
Haltemoment Bremse (Abtrieb)	T _{Br} [Nm]	23		

14 1015765 11/2015 V01

Leistungscharakteristik

Die dargestellten Leistungskurven sind gültig für die spezifizierte Umgebungstemperatur (Betrieb) und sofern die Motorklemmenspannung mindestens dem in der Tabelle Technische Daten genannten Wert entspricht.

Legende

Tabelle 16.1

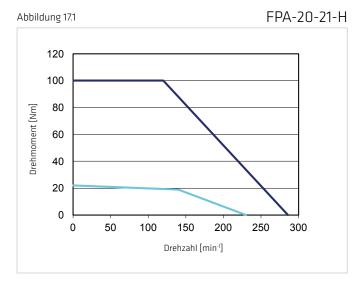
	idealie 16.1					
	Symbol [Einheit]	FPA-2	20B-H			
Untersetzung	i[]	21	33			
Maximales Drehmoment	T _{max} [Nm]	100	100			
Maximale Drehzahl	n _{max} [min ⁻¹]	286	182			
Maximalstrom	I _{max} [A _{eff}]	7,7	3,8			
Stillstandsdrehmoment	T ₀ [Nm]	22	34			
Stillstandstrom	I ₀ [A _{eff}]	1,3				
Maximale stationäre Zwischenkreisspannung	$U_{DCmax}[V_{DC}]$	680				
Elektrische Zeitkonstante (20°C)	t _e [ms]	3,2				
Mechanische Zeitkonstante (20°C)	t _m [ms]	3,0				
Leerlaufstrom (bei Bemessungsdrehzahl)	I _{NL} [A _{eff}]	0,3				
Drehmomentkonstante (Abtrieb)	k _{Tout} [Nm/A _{eff}]	19,3	30,3			
Drehmomentkonstante (Motor)	k _{TM} [Nm/A _{eff}]	1	,1			
AC-Spannungskonstante (L-L, 20°C, Motor)	k _{EM} [V _{eff} /1000 min ⁻¹]	6	5			
Motorklemmenspannung (nur Grundwelle)	U _M [V _{eff}]	43	30			
Motor maximale Drehzahl	n _{max} [min ⁻¹]	60	00			
Motor Bemessungsdrehzahl	n _N [min ⁻¹]	30	00			
Widerstand (L-L, +20°C)	$R_{L-L}[\Omega]$	13,4				
Induktivität (L-L)	L _{L-L} [mH]	42,3				
Polpaarzahl	p[]	3				
Gewicht ohne Bremse	m [kg]	4,6				
Gewicht mit Bremse	m [kg]	5	,3			

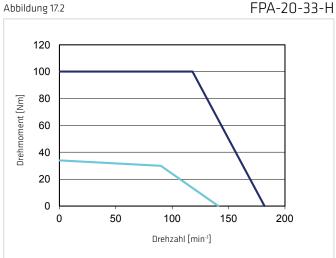
Massenträgheitsmomente

Tabelle 16.2

	Symbol [Einheit]	FPA-:	20B-H		
Untersetzung	i[]	21 33			
Massenträgheitsmomente abtriebsseitig					
Massenträgheitsmoment ohne Bremse	J _{out} [kgm²]	0,059	0,142		
Massenträgheitsmoment mit Bremse	J _{out} [kgm²]	0,076	0,183		
Massenträgheitsmomente motorseitig					
Massenträgheitsmoment motorseitig ohne Bremse	J [10 ⁻⁴ kgm²]	1,35	1,30		
Massenträgheitsmoment motorseitig mit Bremse	J [10⁻⁴ kgm²]	1,73	1,68		

Technische Daten Motorbremse


Tabelle 16.3


	Symbol [Einheit]	FPA-20B-H		
Untersetzung	i []	21	33	
Bremsenspannung	U _{Br} [V _{DC}]	24 ±10%		
Haltemoment Bremse (Abtrieb)	T _{Br} [Nm]	52	82	

16 1015765 11/2015 V01

Leistungscharakteristik

Die dargestellten Leistungskurven sind gültig für die spezifizierte Umgebungstemperatur (Betrieb) und sofern die Motorklemmenspannung mindestens dem in der Tabelle Technische Daten genannten Wert entspricht.

Legende

Tabelle 18.1

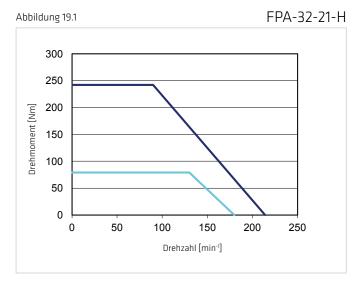
	Symbol [Einheit]	FPA- <u>-</u>	32B-H	
Untersetzung	i[]	21	33	
Maximales Drehmoment	T _{max} [Nm]	242	300	
Maximale Drehzahl	n _{max} [min ⁻¹]	214	136	
Maximalstrom	I _{max} [A _{eff}]	13,2	9,1	
Stillstandsdrehmoment	T ₀ [Nm]	79	117	
Stillstandstrom	I ₀ [A _{eff}]	3,10	2,90	
Maximale stationäre Zwischenkreisspannung	$U_{DCmax}\left[V_{DC}\right]$	680		
Elektrische Zeitkonstante (20°C)	t _e [ms]	4,9		
Mechanische Zeitkonstante (20°C)	t _m [ms]	4,0		
Leerlaufstrom (bei Bemessungsdrehzahl)	I _{NL} [A _{eff}]	0,4		
Drehmomentkonstante (Abtrieb)	k _{Tout} [Nm/A _{eff}]	27,2	42,8	
Drehmomentkonstante (Motor)	k _{TM} [Nm/A _{eff}]	1,4	14	
AC-Spannungskonstante (L-L, 20°C, Motor)	k _{EM} [V _{eff} /1000 min ⁻¹]	8	7	
Motorklemmenspannung (nur Grundwelle)	U _M [V _{eff}]	43	30	
Motor maximale Drehzahl	n _{max} [min ⁻¹]	45	00	
Motor Bemessungsdrehzahl	n _N [min ⁻¹]	25	00	
Widerstand (L-L, $+20^{\circ}$ C)	$R_{LL}\left[\Omega ight]$	7,2		
Induktivität (L-L)	L _{LL} [mH]	35		
Polpaarzahl	p[]	3		
Gewicht ohne Bremse	m [kg]	11		
Gewicht mit Bremse	m [kg]	1.	2	

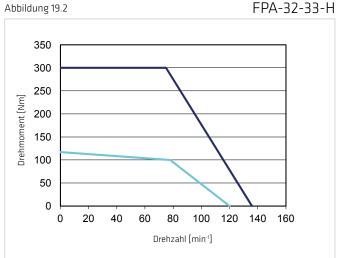
Massenträgheitsmomente

Tabelle 18.2

	Symbol [Einheit]	FPA-32B-H	
Untersetzung	i[]	21 33	
Massenträgheitsmomente abtriebsseitig			
Massenträgheitsmoment ohne Bremse	J _{out} [kgm²]	0,270	0,640
Massenträgheitsmoment mit Bremse	J _{out} [kgm²]	2] 0,314	
Massenträgheitsmomente motorseitig			
Massenträgheitsmoment motorseitig ohne Bremse	J [10 ⁻⁴ kgm²]	6,12 5,90	
Massenträgheitsmoment motorseitig mit Bremse	J [10 ⁻⁴ kgm ²]	7,12	6,90

Technische Daten Motorbremse

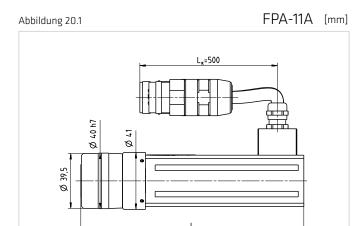

Tabelle 18.3


	Symbol [Einheit]	FPA-32B-H		
Untersetzung	i []	21	33	
Bremsenspannung	U _{Br} [V _{DC}]	24 ±10%		
Haltemoment Bremse (Abtrieb)	T _{Br} [Nm]	105	165	

18 1015765 11/2015 V01

Leistungscharakteristik

Die dargestellten Leistungskurven sind gültig für die spezifizierte Umgebungstemperatur (Betrieb) und sofern die Motorklemmenspannung mindestens dem in der Tabelle Technische Daten genannten Wert entspricht.


Legende

Intermittierender Betrieb U_M = 430 VAC Dauerbetrieb

3.3.3 Abmessungen

Detaillierte 2D-Zeichnungen und 3D-Modelle finden Sie unter folgendem Quicklink:

QUICKLINK www.harmonicdrive.de/CAD1050

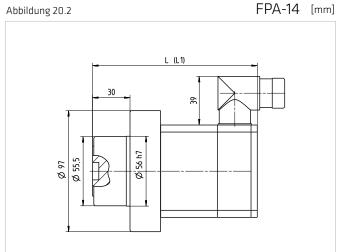
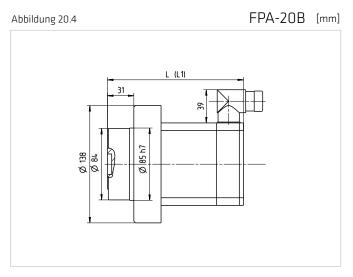



Tabelle 20.3

	Einheit	FPA-11A				FPA-14		
Motorfeedbacksystem		RES			RES	E2048	M2048	
Untersetzung		9	21	37	45			
Länge (ohne Bremse)	L [mm]	152	161	146	146	132	158	188
Länge (mit Bremse)	L1 [mm]	-	-	-	-	179	205	235

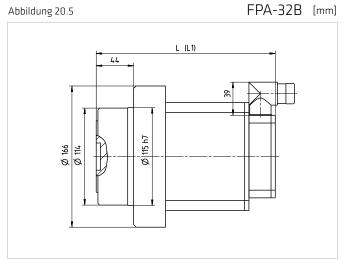


Tabelle 20.6

	Einheit	FPA-20B				FPA-32B	
Motorfeedbacksystem		RES	E2048	M2048	RES	E2048	M2048
Länge (ohne Bremse)	L [mm]	160	199		211	24	45
Länge (mit Bremse)	L1 [mm]	207	246		271	31	05

20 1015765 11/2015 V01

3.3.4 Genauigkeit

Tabelle 21.1

	Symbol [Einheit]	FPA-11A-H	FPA-14-H	FPA-20B-H	FPA-32B-H
Übertragungsgenauigkeit	[arcmin]	< 5	< 4	< 4	< 4
Wiederholgenauigkeit	[arcmin]	< ± 0,5	< ± 0,33	< ± 0,25	< ± 0,25
Spiel	[arcmin]	< 3	< 1	< 1	<1

3.3.5 Torsionssteifigkeit

Tabelle 21.2

	Symbol [Einheit]	FPA-11A-H	FPA-14-H	FPA-20B-H	FPA-32B-H
Torsionssteifigkeit	A/B [Nm/rad]	2200	4700	18500	74100
Mittlerer Verdrehwinkel 1)	D [arcmin]	3	1,7	1,1	1

¹⁾ bei 15% Getriebenenndrehmoment

3.3.6 Abtriebslager

Die Servoantriebe der Baureihe FPA sind mit einem hochbelastbaren Abtriebslager ausgerüstet. Dieses nimmt sowohl Axialund Radialkäfte als auch große Kippmomente auf. Es verhindert ein Verkippen des Getriebes, so dass eine lange Lebensdauer und gleichbleibende Genauigkeit erreicht werden.

Die Berechnung der Abtriebslagerlebensdauer ist in Kapitel 4.3 beschrieben.

Technische Daten

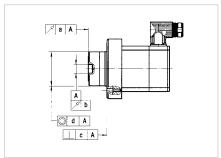
Tabelle 22.1

	Symbol [Einheit]	FPA-11A-H		FPA-14-H		FPA-20B-H		FPA-	32B-H		
Lagertyp 1)		С		СССС		С			(
Teilkreisdurchmesser	d _p [mm]	0,0275		0,041 0		0,0	164	0,0	185		
Abstand	R [mm]	16		11,0	000	11,500		14,000			
Dynamische Tragzahl	C [N]	3116		5110	,000	10600,000		20500,000			
Statische Tragzahl	C ₀ [N]	4087		7060	,000	17300,000		32800,000			
Dynamisches Kippmoment 2)	M dyn (max) [Nm]	9,5		32,	300	183,000		452,	,000		
Statisches Kippmoment 3)	M _{0 (max)} [Nm]		3	37		95,0	000	369,	000	929,	000
Kippsteifigkeit 5)	K _B [Nm/arcmin]	2,55		8,8	00	49,0	000	123,	000		
Untersetzung	i	9	21	37	45	21	33	21	33	21	33
Dynamische Axiallast 4)	F _{A dyn (max)} [N]	510	660	780	830	1080	1240	2250	2580	4360	4990
Dynamische Radiallast 4)	F _{R dyn (max)} [N]	340	440	520	550	720	830	1510	1730	2920	3340

- 1) C = Kreuzrollenlager
- Die Daten gelten bei folgenden Bedingungen:

M0: Fa = 0N; Fr = 0N

Fa: M0 = 0Nm; Fr = 0N


Fr: M0 = 0Nm; Fa = 0N

n = 140 min-1

L10 = 20000 h Fw = 1,5

- 3,4) Die Daten gelten für einen statischen Sicherheitsfaktor fs = 1,5
- 5) Mittelwert

Abbildung 22.2

Toleranzen

Tabelle 22.3

	Symbol [Einheit]	FPA-11A-H	FPA-14-H	FPA-20B-H	FPA-32B-H
a	[mm]	0,020	0,020	0,020	0,020
b	[mm]	0,030	0,040	0,040	0,040
С	[mm]	0,050	0,060	0,060	0,060
d	[mm]	0,020	0,040	0,060	0,050

3.3.7 Motorfeedbacksysteme

Aufhau und Funktionsweise

Zum genauen Einstellen der Position sind der Servomotor und seine Regelung mit einer Messeinrichtung (Feedback) versehen, welche die aktuelle Position (z.B. den zurückgelegten Drehwinkel bezüglich einer Anfangsposition) des Motors bestimmt.

Diese Messung erfolgt über einen Drehgeber, z.B. einen Resolver, einen Inkrementalgeber oder einen Absolutwertgeber. Die elektronische Regelung vergleicht das Signal dieses Gebers mit einem vorgegebenen Positions-Sollwert. Liegt eine Abweichung vor, so wird der Motor in diejenige Richtung gedreht, die einen geringeren Verfahrweg zum Sollwert darstellt. Dies führt dazu, dass sich die Abweichung verringert. Die Prozedur wiederholt sich solange, bis der aktuelle Wert inkrementell oder via Approximation innerhalb der Toleranzgrenzen des Sollwerts liegt. Alternativ kann die Motorposition auch digital erfasst und mittels einer geeigneten Rechnerschaltung mit einem Sollwert verglichen werden.

Servomotoren und -antriebe der Harmonic Drive AG verwenden unterschiedliche Motorfeedbacksysteme, welche als Lagegeber mehrere Aufgaben erfüllen:

Kommutierung

Kommutierungssignale oder absolute Positionswerte liefern die notwendigen Informationen über die Rotorlage, um die korrekte Kommutierung zu gewährleisten.

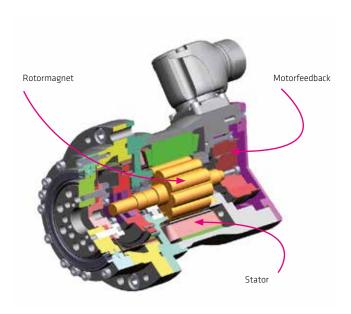
Drehzahlistwert

Das zur Drehzahlregelung notwendige Istwertsignal wird im Servoregler aus der zyklischen Änderung der Lageinformation gewonnen.

Lageistwert

Inkrementalgeber

Das zur Lageregelung notwendige Istwertsignal wird durch aufaddieren inkrementeller Lageänderungen gebildet. Bei


Inkrementalgebern mit Rechtecksignalen kann die Auflösung durch Flankenauswertung vervierfacht werden (quadcounting). Bei Inkrementalgebern mit SIN / COS Signalen kann die Auflösung durch Interpolation im Regelgerät erhöht werden.

Absolutwertgeber

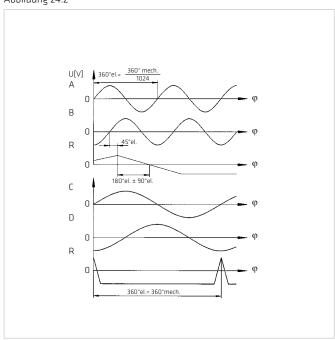
Absolutwertgeber liefern eine absolute Lageinformation über eine (Singleturn) oder mehrere (Multiturn) Umdrehungen. Aus dieser Information kann zum einen die Rotorlage zur Kommutierung ermittelt werden, zum anderen kann ggf. eine Referenzfahrt entfallen. Bei Absolutwertgebern mit zusätzlichen Inkrementalsignalen wird typischerweise die absolute Lageinformation beim Einschalten ausgelesen, anschließend werden zur Drehzahl- und Lageistwertbildung die Inkrementalsignale ausgewertet. Volldigitale Absolutwertgeber als Motorfeedbacksystem besitzen eine so hohe Auflösung des Absolutwertes, dass auf zusätzliche Inkrementalsignale verzichtet werden kann.

Auflösung

In Verbindung mit den hochpräzisen Getrieben der Harmonic Drive AG kann über das Motorfeedbacksystem die abtriebsseitige Lage erfasst werden, ohne zusätzliche Winkelmessgeräte einsetzen zu müssen. Die Auflösung des Motorfeedbacksystems wird zusätzlich über die Untersetzung des Getriebes vervielfacht.

E2048

Inkrementelles Motorfeedbacksystem mit SIN / COS Signalen, Referenzsignal und Kommutierungssignalen


Tabelle 24.1

Bestellbezeichnung	Symbol [Einheit]	E2048		
Herstellerbezeichnung		ERN 1185 / ERN 1387		
Spannungsversorgung ¹⁾	U _b [VDC]	5 ± 10%		
Stromaufnahme (max., ohne Last) 1)	I [mA]	120		
Inkrementalsignale	$u_{pp}[V_{ss}]$	0,8 1,2		
Signalform		sinusförmig		
Strichzahl	n ₁ [A / B]	2048		
Kommutierungssignale	$u_{pp}[V_{ss}]$	0,8 1,2		
Signalform		sinusförmig		
Strichzahl	n ₂ [C / D]	1		
Referenzsignal	n ₃ [R]		1	
Genauigkeit 1)	[arcsec]	±	40	
Auflösung inkrementell (motorseitig) 2)	inc []	524288		
		Getriebeuntersetzung FPA		
Auflösung (abtriebsseitig) 2)	i[]	21	33	
	[arcsec]	0,12	0,07	

¹⁾ Quelle: Hersteller

Signalverlauf

Abbildung 24.2

- Gültig bei Drehrichtung CW der Motorwelle (mit Blick von vorne auf die Motorwelle)
- CW des Abtriebsflansches bei FPA

²⁾ bei Interpolation mit 8 bit

M2048

Multiturn-absolutes Motorfeedbacksystem mit inkrementellen SIN / COS Signalen und EnDat Datenschnittstelle

Tabelle 25.1

Bestellbezeichnung	Symbol [Einheit]	MZ	2048
Herstellerbezeichnung		EQN	N 1325
Protokoll		EnD	lat 2.2
Spannungsversorgung 1)	U _b [VDC]	3,6	14
Stromaufnahme (typ. @ 5 V, ohne Last) 1)	I [mA]	1	05
Inkrementalsignale	$u_{pp}[V_{ss}]$	0,8 1,2	
Signalform		sinusförmig	
Strichzahl	n ₁ [SIN / COS]	2048	
absolute Positionswerte / Umdrehung (motorseitig) 3)		8192	
Anzahl Umdrehungen		4096	
Genauigkeit ¹⁾	[arcsec]	± 20	
		Getriebeunt	ersetzung FPA
Auflösung Absolutwert (abtriebsseitig)	i []	21	33
	phi [arcsec]	7,6	4,8
Anzahl Umdrehungen (abtriebsseitig)		195	124
Auflösung inkrementell (motorseitig) 2)	inc []	524	4288
		Getriebeuntersetzung FPA	
Auflösung (abtriebsseitig) ²⁾	i []	21	33
	phi [arcsec]	0,1	0,1

¹⁾ Quelle: Hersteller

RES

Resolver

Tabelle 25.2

Bestellbezeichnung	Symbol [Einheit]	R	ES	
Herstellerbezeichnung		RE		
Spannungsversorgung 1)	U _b [VAC]	7		
Stromaufnahme (typ. @ 5 kHz, ohne Last) 1)	I [mA]	50		
Eingangsfrequenz	f[kHz]	10		
Polpaare		1		
Übersetzungsverhältnis	i[]	0,5 ± 10%		
Genauigkeit ¹⁾	[arcmin]	± 10		
Auflösung inkrementell (motorseitig) 2)	inc []	256		
		Getriebeunte	rsetzung FPA	
Auflösung (abtriebsseitig) ²⁾	i[]	21	33	
	phi [arcsec]	242	154	

¹⁾ Quelle: Hersteller

³⁾ ansteigende Positionswerte bei Drehrichtung

²⁾ bei Interpolation mit 8 bit

⁻ CW der Motorwelle (mit Blick von vorne auf die Motorwelle)

⁻ CW des Abtriebsflansches bei FPA

²⁾ bei Interpolation mit 8 bit

3.3.8 Temperatursensoren

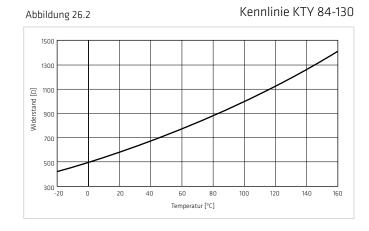

Zum Wicklungsschutz bei Drehzahl > 0 sind in die Motorwicklungen Temperatursensoren integriert. Für Anwendungen mit hoher Last bei n = 0 ist ein zusätzlicher Schutz (zum Beispiel I²t Überwachung) empfehlenswert. Bei Verwendung des KTY 84-130 sind die in der Tabelle angegebenen Werte im Servoregler oder einem externen Auswertegerät zu parametrieren.

Tabelle 26.1

Sensortyp	Kennwert	Symbol [Einheit]	Warnung	Abschaltung
VTV 04 130	Temperatur	T [°C]	80	90
KTY 84-130	Widerstand	R [Ω]	882 ± 3%	940 ± 3%

Der KTY-Fühler dient der Temperaturmessung und Überwachung der Motorwicklung.

Bei Verwendung des KTY ist es möglich, auch das Getriebefett vor unzulässigen Temperaturen zu schützen.

3.3.9 Elektrische Anschlüsse

Tabelle 27.1

Steckerkonfiguration						
Bestellbezeichnung Motor Motorfeedbacksystem						
		RES	E2048 M2048			
Н	6 pol. (M23)	12 pol. (M23)	17 pol. (M23)			

Hinweis:

kundespezifische Ausführungen können abweichen, ggf. Bestätigungszeichnung beachten

FPA-xx-yy-H-yyy(-B)

Zum Betrieb der Servoantriebe FPA am Servoregler YukonDrive® stehen fertig konfektionierte Kabelsätze zur Verfügung.

Tabelle 27.2

Motorfeedbacksystem	Steckerkonfiguration	Materialnummer Kabelsatz		belsatz	Bezeichnung	
		3 m	5 m	10 m		
M2048	н	314260	314261	314262	Kabelsatz LynxDrive®-MEE/MKE an YukonDrive	
RES	н	314271	314272	314273	Kabelsatz LynxDrive®-ROO an YukonDrive®	

FPA-xx-yy-H-yyy(-B)

Zum Anschluss der Servoantriebe FPA-H an Achsregler der SINAMICS S120 Baureihe stehen Kabelverlängerungen der Fa. Siemens zur Verfügung.

Diese sind konfektioniert für den Anschluss an Sensor Module SMC.

Anschlusskabel SINAMICS S120

Tabelle 28.1

Leistungsanschluss	
FPA-xx-H ohne Bremse	6FX8002-5CA01-1xx0
FPA-xx-H mit Bremse	6FX8002-5DA01-1xx0
Motorfeedback	
Motorfeedback E2048	6FX8002-2CA31-1xx0
	6FX8002-2CA31-1xx0 6FX8002-2EQ10-1xx0

Anschlusskabelsatz mit offenem Kabelende

Alternativ können antriebsseitig konfektionierte, reglerseitig offene Kabelverlängerungen genutzt werden. Diese können auch zum Anschluss an Regelgeräte anderer Hersteller verwendet werden.

Tabelle 28.2

Variante	Art. Nr.:	Länge [m]
E2048	308853 308854 308855 308856 308857	5 10 15 20 25
M2048	308858 308859 308860 308861 308862	5 10 15 20 25

FPA-xx-yy-H-E2048(-B)

Tabelle 29.1

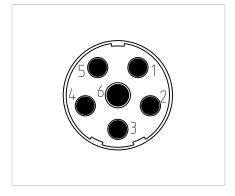

Motorstecker	6 / M23 x1
Kabelkupplung	6 / M23 x 1 / Art. Nr.: 303493
Außendurchmesser	ca. 26 mm
Länge	ca. 60 mm

Tabelle 29.3

	FPA-xx-H-E2048					
Steckerstift	1	2	3	4	5	6
Motorphase	U	V	PE	BR+ 1)	BR- 1)	W

¹⁾ nur für FPA mit Option Bremse (-B)

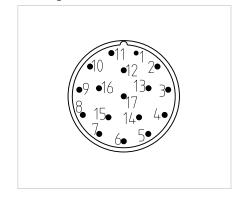

Abbildung 29.2

Tabelle 29.4

Encoderstecker	17 / M23 x 1
Kabelkupplung	17 / M23 x 1 / Art. Nr.: 307262
Außendurchmesser	ca. 26 mm
Länge	ca. 60 mm

Abbildung 29.5

Tabelle 29.6

Steckerstift	1	2	3	4	5	6	7 (15)	8	9	10 (16)	11	12	13	14	15 (7)	16 (10)	17
Signal	A+	A-	R+	D-	C+	C-	GND	Temp+ KTY	Temp- KTY	Up	B+	B-	R-	D+	GND Sensor	Up Sensor	n. c.

FPA-xx-yy-H-M2048(-B)

Tabelle 30.1

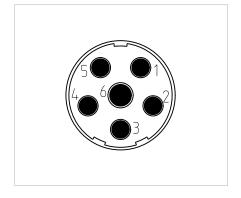

Motorstecker	6 / M23 x 1
Kabelkupplung	6 / M23 x 1 / Art. Nr.: 303493
Außendurchmesser	ca. 26 mm
Länge	ca. 60 mm

Tabelle 30.3

			FPA-хх-уу- Н	I-M2048(-B)		
Steckerstift	1	2	3	4	5	6
Motorphase	U	V	PE	BR+ 1)	BR- 1)	W

¹⁾ nur für FPA mit Option Bremse (-B)

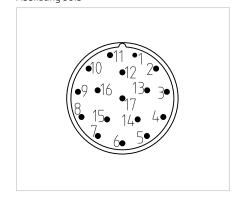

Abbildung 30.2

Tabelle 30.4

Encoderstecker	17 / M23 x 1
Kabelkupplung	17 / M23 x 1 / Art. Nr.: 307262
Außendurchmesser	ca. 26 mm
Länge	ca. 60 mm

Abbildung 30.5

Tabelle 30.6

Steckerstift	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Signal	A+	A-	Data+	n.c	Clock+	n.c	M Encoder (GND)	Temp+ KTY	Temp- KTY	P Encoder (Up)	B+	B-	Data-	Clock-	GND Sensor	Up Sensor	n. c.

FPA-xx-yy-H-RES(-B)

Tabelle 31.1

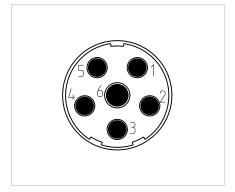

Motorstecker	6 / M23 x 1
Kabelkupplung	6 / M23 x 1 / Art. Nr.: 303493
Außendurchmesser	ca. 26 mm
Länge	ca. 60 mm

Tabelle 31.3

			FPA-xx-yy-	-H-RES(-B)		
Steckerstift	1	2	3	4	5	6
Motorphase	U	V	PE	BR+ 1)	BR- 1)	W

¹⁾ nur für FPA mit Option Bremse (-B)

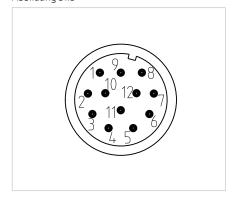

Abbildung 31.2

Tabelle 31.4

Encoderstecker	12 / M23 x 1
Kabelkupplung	12 / M23 x 1 / Art. Nr.: 303404
Außendurchmesser	ca. 26 mm
Länge	ca. 60 mm

Abbildung 31.5

Tabelle 31.6

Steckerstift	1	2	3	4	5	6	7	8	9	10	11	12
Signal	SIN	REFSIN	n. c.	n. c.	n. c.	n. c.	Vss-	Temp+ (KTY)	Temp- (KTY)	Vss+	cos	REFCOS

4. Antriebsauslegung

4.1. Auswahlschema und Auslegungsbeispiel

Flussdiagramm zur Systemauswahl

Gleichung 32.1

$$T_1 = T_L + \frac{2\pi}{60} \cdot \frac{(J_{out} + J_L) \cdot n_2}{t_1}$$

Gleichung 32.2

$$T_{2} = T_{L}$$

$$T_{3} = T_{L} \cdot (T_{1} - T_{L})$$

$$T_{rms} = \sqrt{\frac{T_{1}^{2} \cdot t_{1} + T_{2}^{2} \cdot t_{2} + T_{3}^{2} \cdot t_{3}}{t_{1} + t_{2} + t_{3} + t_{p}}}$$

Gleichung 32.3

$$n_{av} = \begin{array}{c} \frac{-\frac{n_{2}}{2} \cdot t_{1} + n_{2} \cdot t_{2} + \frac{n_{2}}{2} \cdot t_{3}}{t_{1} + t_{2} + t_{3} + t_{p}} \end{array}$$

Gleichung 32.4

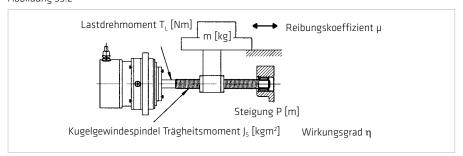
ED =
$$\frac{t_1 + t_2 + t_3}{t_1 + t_2 + t_3 + t_p} \cdot 100 \%$$

HINWEIS

Wir übernehmen gerne Ihre Getriebeauslegung in unserem Haus. Bitte kontaktieren Sie unsere Anwendungsberater.

Anforderungen erfüllt

Bedingungen für die Vorauswahl

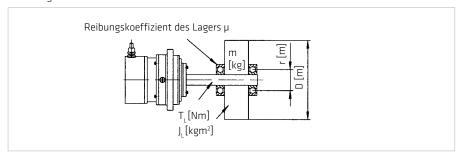

Tabelle 33.1

Last	Bedingung	Tabellierter Wert	Einheit
Max. Drehzahl der Last (n ₂)	≤ n _{max}	Max. Drehzahl	[min ⁻¹]
Massenträgheitsmoment der Last (J _L)	≤ 3J _{Out} ¹)	Trägheitsmoment	[kgm²]

 $^{^{1)}}$ $J_{L} \leq 3 \cdot J_{0ut}$ wird für hochdynamische Einsatzfälle empfohlen (hohe Dynamik und Genauigkeit).

Lineare Horizontalbewegung

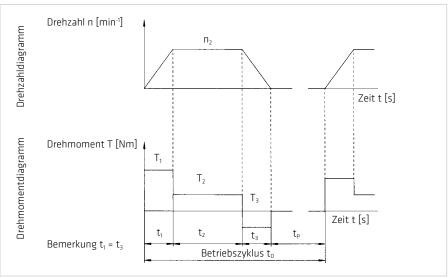
Abbildung 33.2


Gleichung 33.3

$$J_{L} = J_{S} + m \left(\frac{P}{2\pi}\right)^{2} [kgm^{2}]$$

$$T_{L} = \frac{\mu \cdot m \cdot P \cdot g}{2\pi \cdot \eta} [Nm]$$

Rotationsbewegung


Abbildung 33.4

Gleichung 33.5

$$J_L = \frac{m}{8} \cdot D^2 \text{ [kgm}^2\text{]}$$
 $T_L = \mu \cdot m \cdot g \cdot r \text{ [Nm] } g = 9.81 \text{ [m/s}^2\text{]}$

Abbildung 33.6

Beispiel einer Antriebsauslegung

Belastungsdaten

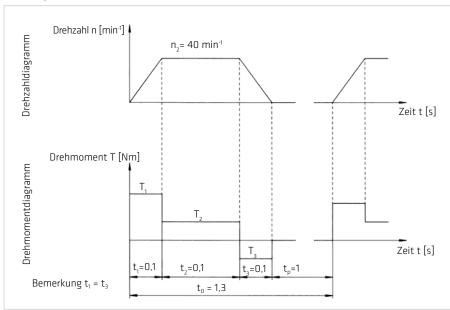
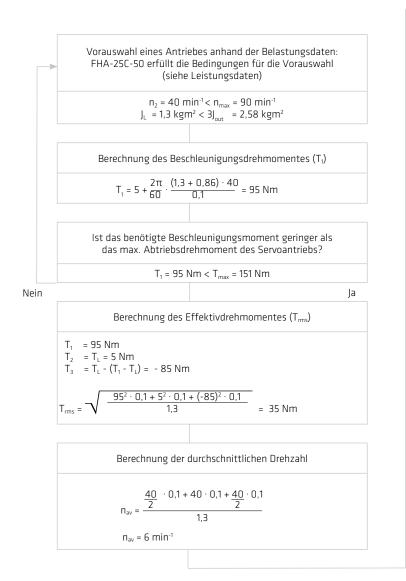

Benötigt wird ein Servoantrieb, der bei einer horizontalen Drehachse eine Masse zyklisch positionieren muss.

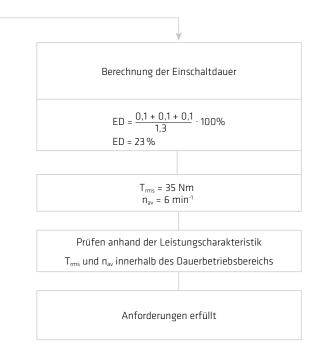
Tabelle 34.1

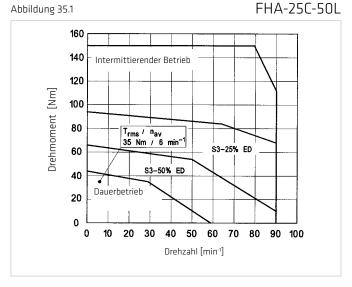
Drehzahl der Last	$n_2 = 40 \text{ [min}^{-1}\text{]}$
Lastdrehmoment (z. B. Reibung)	T _L = 5 [Nm]
Trägheitsmoment der Last	$J_L = 1.3 \text{ [kgm}^2\text{]}$
Zykluszeiten	
Beschleunigen; Bremsen	$t_1 = t_3 = 0,1 [s]$
Fahren mit Arbeitsdrehzahl	t ₂ = 0,1 [s]
Stillstand	$t_p = 1 [s]$

Bemerkung: Die Berechnungswerte für die Auslegung müssen auf den Abtrieb des Servoantriebes bezogen werden.

Abbildung 34.2


Antriebsdaten (im Beispiel: FHA-25C-50-L)


Tabelle 34.3


Max. Drehmoment	T _{max} = 151 [Nm]
Max. Drehzahl	n _{max} = 90 [min ⁻¹]
Massenträgheitsmoment	$J_{Out} = 0.86 \text{ [kgm}^2\text{]}$

V01

Antriebsauswahl

min⁻¹ = rpm ED = 1min.

4.2 Ermittlung des Torsionswinkels

Gleichung 36.1

$$T \leq T_1$$

$$\varphi = \frac{T}{K_1}$$

Gleichung 36.2

$$T_1 < T \le T_2$$

$$\varphi = \frac{T_1}{K_1} + \frac{T - T_1}{K_2}$$

Gleichung 36.3

$$T > T_2$$

$$\phi = \frac{T_1}{K_1} + \frac{T_2 - T_1}{K_2} + \frac{T - T_2}{K_3}$$

φ = Winkel [rad] T = Drehmoment [Nm] K = Steifigkeit [Nm/rad]

Beispiel

$$T = 60 \text{ Nm}$$
 $K_1 = 6.7 \cdot 10^4 \text{ Nm/rad}$

 $T_1 = 29 \text{ Nm}$ $K_2 = 1.1 \cdot 10^5 \text{ Nm/rad}$

 $T_2 = 108 \text{ Nm}$ $K_3 = 1.2 \cdot 10^5 \text{ Nm/rad}$

$$\phi = \frac{29 \text{ Nm}}{6.7 \cdot 10^4 \text{ Nm/rad}} + \frac{60 \text{ Nm} - 29 \text{ Nm}}{11 \cdot 10^4 \text{ Nm/rad}}$$

$$\phi = 7.15 \cdot 10^{-4} \text{ rad}$$

$$\phi = 2.5 \text{ arc min}$$

Gleichung 36.4

$$\varphi$$
 [arc min] = φ [rad] $\cdot \frac{180 \cdot 60}{\pi}$

4.3 Abtriebslager

4.3.1 Lebensdauer

Bei Schwenkbewegungen

Die Lebensdauer bei reinen Schwenkbewegungen (oszillierende Bewegungen) wird mittels Gleichung 37.1 berechnet.

Gleichung 37.1

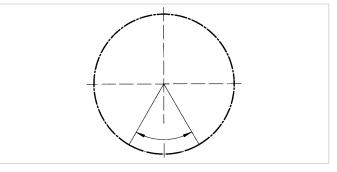
$$L_{\text{OC}} = \ \frac{10^6}{60 \cdot n_1} \ \cdot \frac{180}{\phi} \cdot \left(\frac{C}{f_w \cdot P_c}\right)^{\!B}$$

mit:

L_{oc} [h] = Lebensdauer bei reiner Schwenkbewegung

n₁ [cpm] = Anzahl Schwingungen/Minute*

C [N] = Dynamische Tragzahl


P_c [N] = Dynamische Äquivalentlast

 φ [Grad] = Schwenkwinkel

f_w = Betriebsfaktor (Tabelle 38.3)

Abbildung 37.2

Schwenkwinkel

Bei Schwenkwinkeln < 5° kann infolge Mangelschmierung Reibkorrosion auftreten. Wir bitten ggf. um Rücksprache.

Lagertyp des gewählten Produkts siehe "Abtriebslagerung" im entsprechenden Produktkapitel.

Tabelle 37.3

Lagertyp	В
Kreuzrollenlager	10/3
Vierpunktlager	3

Bei kontinuierlichem Betrieb

Die Lebensdauer des Abtriebslagers kann mit Gleichung 37.3 bestimmt werden.

Gleichung 37.4

$$L_{10} = \frac{10^6}{60 \cdot n_{av}} \cdot \left(\frac{C}{f_w \cdot P_c}\right)^B$$

mit:

 L_{10} [h] = Lebensdauer

 n_{av} [min⁻¹] = durchschnittl. Abtriebsdrehzahl

C [N] = Dynamische Tragzahl

P_c [N] = Dynamische Äquivalentlast

f_w = Betriebsfaktor

Durchschnittliche Abtriebsgeschwindigkeit

$$n_{av} = \frac{|n_1|t_1 + |n_2|t_2 + ... + |n_n|t_n}{t_1 + t_2 + ... + t_n + t_p}$$

Tabelle 37.5

Lastbedingungen	f _w
Keine Stöße oder Schwingungen	11,2
Normale Belastung	1,2 1,5
Stöße und/oder Schwingungen	1,5 3

^{*} eine Schwingung entspricht 2φ

Dynamische Äquivalentlast

Gleichung 38.1

$$P_C = x \cdot \left(F_{rav} + \frac{2M}{dp}\right) + y \cdot F_{aav}$$

Gleichung 38.2

$$F_{\mathsf{rav}} = \left(\frac{|n_1| \cdot t_1 \cdot (\mid F_{r1} \mid)^B + |n_2| \cdot t_2 \cdot (\mid F_{r2} \mid)^B + \ldots + |n_n| \cdot t_n \cdot (\mid F_{rn} \mid)^B}{|n_1| \cdot t_1 + |n_2| \cdot t_2 + \ldots + |n_n| \cdot t_n} \right)^{1/B}$$

Gleichung 38.3

$$F_{aav} = \left(\frac{|n_1| \cdot t_1 \cdot (|F_{a1}|)^B + |n_2| \cdot t_2 \cdot (|F_{a2}|)^B + ... + |n_n| \cdot t_n \cdot (|F_{an}|)^B}{|n_1| \cdot t_1 + |n_2| \cdot t_2 + ... + |n_n| \cdot t_n} \right)^{1/B}$$

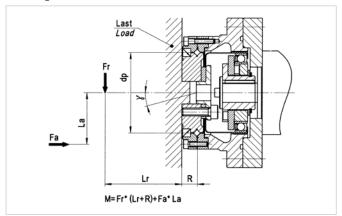
mit:

 $F_{rav}\left[N\right]$ Radialkraft

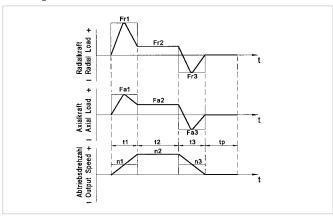
 $F_{aav}\left[N\right]$ Axialkraft

Teilkreis $d_p[m]$

Radialkraftfaktor (Tabelle 38.4)


Axialkraftfaktor (Tabelle 38.4)

М Kippmoment


Tabelle 38.4

Lastfaktoren	x	У
$\frac{F_{aav}}{F_{rav} + 2 \cdot M / dp} \le 1,5$	1	0,45
$\frac{F_{aax}}{F_{rav} + 2 \cdot M / dp} > 1,5$	0,67	0,67

Abbildung 38.5

Abbildung 38.6

Hinweis:

 $F_{\rm rx}$ entspricht der maximal auftretenden Radialkraft. $F_{\rm ax}$ entspricht der maximal auftretenden Axialkraft. $t_{\rm p}$ stellt die Pausenzeit dar.

V01

4.3.2 Kippwinkel

Der Auslenkungswinkel als Funktion des anliegenden Kippmomentes am Abtriebslager kann mit Gleichung 39.1 berechnet werden:

Gleichung 39.1

$$\gamma = \frac{M}{K_B}$$

mit:

 $\gamma \, [\text{arcmin}]$ = Auslenkungswinkel des Abtriebslagers M [Nm] = Anliegendes Kippmoment am Abtriebslager
K_B [Nm/arcmin] = Kippsteifigkeit des Abtriebslagers

1015765 11/2015 V01 39

5. Installation und Betrieb

5.1 Transport und Lagerung

Der Transport der Servoantriebe und Motoren sollte grundsätzlich in der Originalverpackung erfolgen.

Werden die Servoantriebe und Motoren nach der Auslieferung nicht gleich in Betrieb genommen, so sind sie in einem trockenen, staub- und erschütterungsfreien Innenraum zu lagern. Sie sollten nicht länger als 2 Jahre bei Raumtemperaturen (+5 °C bis +40 °C) gelagert werden, damit die Fettgebrauchsdauer erhalten bleibt.

INFO

Zugkräfte an den Anschlusskabeln sind zu vermeiden.

5.2 Aufstellung

Beachten Sie die Leistungsdaten und Schutzart und prüfen Sie die Eignung für die Verhältnisse am Einbauort. Durch geeignete konstruktive Maßnahmen ist dafür zu sorgen, dass keine Fremdmedien (Wasser, Bohr-, Kühlemulsion, Späne oder dergleichen) in das Gehäuse eindringen können.

HINWEIS

Die Montage muss ohne Schläge und Druck auf den Antrieb erfolgen.

Der Anbau muss so erfolgen, dass eine ausreichende Ableitung der Verlustwärme gewährleistet ist.

Bei Hohlwellenantrieben dürfen auf das Schutzrohr der Antriebshohlwelle keine Radialkräfte und Axialkräfte wirken.

5.3 Mechanische Installation

Die erforderlichen Angaben zur Last- und Gehäusebefestigung sind in der folgenden Tabelle dargestellt.

Tabelle 40.1

	Symbol [Einheit]	FPA-11A-H	FPA-14-H	FPA-20B-H	FPA-32B-H
Montage der Last	'				
Anzahl der Schrauben		3	6	6	6
Schraubengröße		M4	M4	M6	M8
Schraubenqualität		12.9	12.9	12.9	12.9
Teilkreisdurchmesser	[mm]	18	30	45	60
Anzugsdrehmoment	[Nm]	4,5	4,5	15,3	37,2
Übertragbares Drehmoment	[Nm]	19	63	215	524
Montage des Gehäuses					
Anzahl der Schrauben		4	4	4	4
Schraubengröße		M3	M5	M8	M10
Schraubenqualität		8.8	8.8	8.8	8.8
Teilkreisdurchmesser	[mm]	46	70	105	135
Anzugsdrehmoment	[Nm]	1,4	6,1	24,6	48,0
Übertragbares Drehmoment	[Nm]	15	90	370	780

Die Daten in der Tabelle sind gültig für vollständig entfettete Anschlussflächen (Reibungskoeffizient μ =0,15).

Es wird empfohlen LOCTITE 243 zur Schraubensicherung zu verwenden.

Die Schrauben sind gegen Lösen zu sichern.

5.4 Elektrische Installation

Alle Arbeiten nur im spannungslosen Zustand der Anlage vornehmen.

Elektrische Servoantriebe und Motoren haben gefährliche, spannungsführende und rotierende Teile. Alle Arbeiten während dem Anschluss, der Inbetriebnahme, der Instandsetzung und der Entsorgung sind nur von qualifiziertem Fachpersonal auszuführen. EN 50110-1 und IEC 60364 beachten!

Vor Beginn jeder Arbeit, besonders aber vor dem Öffnen von Abdeckungen, muss der Antrieb vorschriftsmäßig freigeschaltet sein. Neben den Hauptstromkreisen ist dabei auch auf eventuell vorhandene Hilfsstromkreise zu achten.

Einhalten der fünf Sicherheitsregeln:

- Freischalten
- Gegen Wiedereinschalten sichern
- Spannungsfreiheit feststellen
- Erden und kurzschließen
- Benachbarte unter Spannung stehende Teile abdecken oder abschranken

Die zuvor genannten Maßnahmen dürfen erst dann zurückgenommen werden, wenn die Arbeiten abgeschlossen sind und der Antrieb vollständig montiert ist. Unsachgemäßes Verhalten kann Personen- und Sachschäden verursachen. Die jeweils geltenden nationalen, örtlichen und anlagespezifischen Bestimmungen und Erfordernisse sind zu gewährleisten.

Wegen der eingebauten Dauermagnete liegt bei rotierendem Läufer an den Motoranschlüssen Spannung an.

HINWEIS

- Die Anschlussleitungen müssen den Umgebungsbedingungen, Stromstärken, den auftretenden Spannungen und mechanischen Anforderungen angepasst sein.
- Der Schutzleiter muss mit PE verbunden werden.
- · Alle Anschlusskabel müssen geschirmt sein. Das Signalkabel muss zusätzlich paarig verseilt sein.
- Steckverbindungen nur in trockenem, spannungslosem Zustand trennen oder verbinden.

HINWEIS

Geber und Sensoren enthalten elektrostatisch gefährdete Komponenten, ESD-Maßnahmen beachten!

5.5 Inbetriebnahme

HINWEIS

Maßgebend für die Inbetriebnahme ist die Herstellerdokumentation der Harmonic Drive AG.

Vor Inbetriebnahme ist zu prüfen, ob

- der Antrieb ordnungsgemäß montiert ist
- · alle elektrischen Anschlüsse sowie mechanischen Verbindungen nach Vorschrift ausgeführt sind
- der Schutzleiter bzw. die Schutzerdung ordnungsgemäß hergestellt ist
- eventuell vorhandene Zusatzeinrichtungen (Bremse, ...) funktionsfähig sind
- · Berührungsschutzmaßnahmen für bewegte und spannungsführende Teile getroffen sind
- ullet die Grenzdrehzahl n_{\max} nicht überschritten wird
- das Regelgerät mit den korrekten Motordaten parametriert ist
- · die Kommutierung korrekt eingestellt ist

⚠ VORSICHT

Die Drehrichtung ist im ungekoppelten Zustand ohne Abtriebselemente zu kontrollieren. Eventuell vorhandene lose Teile z.B. Passfedern) sind zu entfernen oder zu sichern.

Beim Auftreten von erhöhten Temperaturen, Geräuschen oder Schwingungen ist im Zweifelsfall der Antrieb abzuschalten. Ursache ermitteln, eventuell Rücksprache mit dem Hersteller halten. Schutzeinrichtungen auch im Probebetrieb nicht außer Funktion setzen.

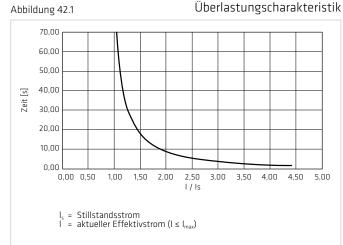
Diese Auflistung könnte unvollständig sein. Weitere Prüfungen könnten notwendig sein.

HINWEIS

Aufgrund der Eigenerwärmung des Antriebs ist nur ein kurzer Probelauf außerhalb des endgültigen Einbauortes und mit relativ geringer Drehzahl zulässig. Typische Richtwerte sind max. 5 Minuten Testdauer (S1-Betrieb) bei einer Motordrehzahl von ca. 1000 min⁻¹.

Oben genannte Richtwerte müssen beachtet werden, um Beschädigungen durch Überhitzung zu vermeiden!

5.6 Überlastschutz


Zum Schutz der Servoantriebe und Motoren vor unzulässigen Temperaturen sind in die Motorwicklungen Temperatursensoren integriert.

Die Temperatursensoren alleine gewährleisten keinen Motorvollschutz. Ein Schutz vor Überlastung der Motorwicklung ist nur bei Drehzahl > 0 möglich. Bei speziellen Anwendungen (z. B. Belastung im Stillstand oder sehr niedrigen Drehzahlen) ist ein zusätzlicher Überlastungsschutz durch Begrenzen der Überlastdauer vorzusehen.

Die im Antriebssystem verbauten Temperatursensoren und deren Spezifikation finden Sie in den technischen Daten.

Darüber hinaus empfiehlt sich der Schutz der Motorwicklung vor Überlastung durch eine im Regelgerät integrierte I²t Überwachung.

Nebenstehende Grafik zeigt beispielhaft die Abhängigkeit der Ansprechzeit der I²t Überwachung vom Überlastfaktor. Der Überlastfaktor beschreibt das Verhältnis zwischen aktuellem Effektivstrom und zulässigem Stillstandsstrom.

5.7 Schutz vor Korrosion und das Eindringen von Fremdkörpern

Das Produkt erreicht bei montierten und gesteckten Steckern und Gegensteckern die Schutzart gemäß Tabelle Technische Daten, wenn die Stecker für die o. g. Schutzart geeignet sind, und durch die Umgebungsbedingungen (Flüssigkeiten, Gase, Taubildung) keine Korrosion an den Laufflächen der Radialwellendichtungen hervorgerufen wird. Sonderausführungen können von obiger Schutzart abweichen.

Scharfkantige oder abrasiv wirkende Teile (Späne, Splitter, Staub aus Metall, Mineralien usw.) dürfen nicht mit Radialwellendichtungen in Kontakt kommen.

Ein permanent auf der Radialwellendichtung stehender Flüssigkeitsfilm muss verhindert werden. Infolge wechselnder Betriebstemperaturen entstehen Druckdifferenzen im Antrieb, die zum Einsaugen der auf der Wellendichtung stehenden Flüssigkeit führt.

Eine zusätzliche kundenseitige Wellendichtung oder ein Sperrluftanschluss sind vorzusehen, wenn ein permanent auf dem Wellendichtring stehender Flüssigkeitsfilm nicht verhindert werden kann. Eine Einhausung oder ein Sperrluftanschluss ist vorzusehen, wenn in der Umgebung des Antriebs ständig mit z. B. Ölnebel zu rechnen ist.

HINWEIS

Spezifikation Sperrluft: konstanter Überdruck im Antrieb; die zugeführte Luft muss getrocknet und gefiltert sein, Überdruck max. 104 Pa.

5.8 Stillsetzen und Wartung

4. Nur bei Motoren mit Lüftereinheit:

Bei Störungen, Wartungsmaßnahmen oder zum Stillsetzen der Motoren führen Sie folgende Schritte aus:

- 1. Beachten Sie die Anweisungen der Maschinendokumentation.
- 2. Bringen Sie den Antrieb über die maschinenseitigen Steuerkommandos geregelt zum Stillstand.
- 3. Schalten Sie die Leistungs- und Steuerspannung des Regelgerätes ab.
- Schalten Sie den Motorschutzschalter für die Lüftereinheit ab.
- 5. Schalten Sie den Hauptschalter der Maschine ab.
- 6. Sichern Sie die Maschine gegen unvorhersehbare Bewegungen und gegen Bedienung durch Unbefugte.
- 7. Warten Sie die Entladezeit der elektrischen Systeme ab und trennen Sie dann alle elektrischen Verbindungen.
- 8. Sichern Sie Motor und ggf. Lüftereinheit vor der Demontage gegen Herabfallen oder Bewegungen, bevor Sie die mechanischen Verbindungen lösen.

43 1015765 11/2015 V01

Lebensgefahr durch elektrische Spannungen.

Arbeiten im Bereich von spannungsführenden Teilen ist lebensgefährlich.

- Arbeiten an der elektrischen Anlage dürfen nur durch Elektrofachkräfte durchgeführt werden. Elektrowerkzeug ist unbedingt notwendig.
- Vor der Arbeit:
 - 1. Freischalten.
 - 2. Gegen Wiedereinschalten sichern.
 - 3. Spannungsfreiheit feststellen.
 - 4. Erden und kurzschließen.
 - 5. Benachbarte, unter Spannung stehende Teile abdecken oder abschranken.
- Prüfen Sie vor Arbeitsbeginn mit geeignetem Messgerät, ob an der Anlage noch Teile unter Restspannung stehen (z.B. durch Kondensatoren usw.). Deren Entladezeiten abwarten.

Verbrennungen durch heiße Oberflächen mit Temperaturen über 100 °C!

Lassen Sie die Motoren vor Beginn der Arbeiten abkühlen. Die in den technischen Daten angegebene thermische Zeitkonstante ist ein Maß für die Abkühlzeit. Abkühlzeiten bis 140 Minuten können erforderlich sein!

Tragen Sie Schutzhandschuhe. Arbeiten Sie nicht an heißen Oberflächen.

Personen- und Sachschaden bei Wartungsarbeiten im laufenden Betrieb!

Führen Sie niemals Wartungsarbeiten an laufenden Maschinen durch. Sichern Sie die Anlage während der Wartungsarbeiten gegen Wiederanlauf und unbefugte Benutzung.

Reinigung

Übermäßiger Schmutz, Staub oder Späne können die Funktion der Motoren negativ beeinflussen, in Extremfällen auch zum Ausfall der Motoren führen. In regelmäßigen Abständen (spätestens nach Ablauf eines Jahres) sollten Sie deshalb die Kühlrippen der Motoren säubern, um eine ausreichend große Wärmeabstrahlungsfläche zu erreichen. Sind die Kühlrippen teilweise mit Schmutz bedeckt ist eine ausreichende Wärmeabfuhr über die Umgebungsluft nicht mehr möglich. Ungenügende Wärmeabstrahlung kann unerwünschte Folgen haben. Die Lagerlebensdauer verringert sich durch Betrieb bei unzulässig hohen Temperaturen (Lagerfett zersetzt sich). Übertemperaturabschaltung trotz Betrieb nach Auswahldaten, weil die entsprechende Kühlung fehlt.

Kontrolle der elektrischen Anschlüsse

Tödlicher Stromschlag durch Berührung spannungsführender Teile!

Bei geringsten Defekten des Kabelmantels ist die Anlage sofort außer Betrieb zu nehmen und das Kabel zu erneuern. Keine provisorischen Reparaturen an den Anschlussleitungen vornehmen.

- Anschlusskabel in regelmäßigen Abständen auf Beschädigungen prüfen und bei Bedarf austauschen.
- Optional vorhandene Energieführungsketten (Schleppketten) auf Defekte überprüfen.
- Schutzleiteranschluss in regelmäßigen Abständen auf ordnungsgemäßen Zustand und festen Sitz überprüfen und ggf. erneuern.

Kontrolle der mechanischen Befestigungen

Kontrollieren Sie in regelmäßigen Abständen die Befestigungsschrauben des Gehäuses und der Last.

6. Außerbetriebnahme und Entsorgung

Die Getriebe, Servoantriebe und Motoren beinhalten Schmierstoffe für Lager und Harmonic Drive® Getriebe sowie elektronische Bauteile und Platinen. Daher muss auf fachgerechte Entsorgung entsprechend der nationalen und örtlichen Vorschriften geachtet werden.

Da Schmierstoffe (Fette und Öle) Gefahrstoffe sind, und entsprechend den gültigen Gesundheitsschutzvorschriften behandelt werden sollten, empfehlen wir bei Bedarf das gültige Sicherheitsdatenblatt bei uns anzufordern.

7. Glossar

7.1 Technische Daten

Abstand R [mm]

Distanz zwischen Abtriebslager und Angriffspunkt der Last.

AC-Spannungskonstante $k_{EM} [V_{eff} / 1000 min^{-1}]$

Effektivwert der induzierten Motorklemmenspannung bei einer Drehzahl von 1000 min⁻¹ und einer Antriebstemperatur von 20 °C.

Baugröße

1) Antriebe/Getriebe mit Harmonic Drive® Getriebe oder Harmonic Planetengetriebe

Die Baugröße ist abgeleitet vom Teilkreisdurchmesser der Verzahnung in Zoll multipliziert mit 10.

2) Servomotor CHM

Die Baugröße bei den CHM Servomotoren beschreibt das Stillstandsdrehmoment in Ncm.

3) Direktantriebe TorkDrive®

Die Baugröße der Baureihe TorkDrive wird durch den Außendurchmesser des Eisenkerns im Stator beschrieben.

Bemessungsdrehmoment T_N [Nm]

Abtriebsdrehmoment mit dem der Antrieb oder Motor bei Nennantriebsdrehzahl kontinuierlich belastet werden kann. Dabei muss der Antrieb oder Motor, abhängig von der Baugröße, auf eine definierte Kühlfläche montiert werden.

Bemessungsdrehzahl n_N [min⁻¹]

Abtriebsdrehzahl, welche bei Belastung des Antriebs oder Motors mit Nenndrehmoment T_N kontinuierlich auftreten darf. Dabei muss der Antrieb oder Motor, abhängig von der Baugröße, auf eine definierte Kühlfläche montiert werden.

Bemessungsleistung P_N [W]

Abgegebene Leistung bei Bemessungsdrehzahl und Bemessungsdrehmoment.

Bemessungsspannung $U_{N}[V_{eff}]$

Anschlussspannung bei Betrieb mit Bemessungsdrehmoment und Bemessungsdrehzahl. Angegeben ist der Effektivwert der Leiterspannung.

Bemessungsstrom $I_N [A_{eff}]$

Effektivwert des sinusförmigen Stroms bei Belastung des Antriebs mit Bemessungsdrehmoment und Bemessungsdrehzahl.

Bremsenspannung U_R, [VDC]

Anschlussspannung der Haltebremse.

Drehmomentkonstante (Abtrieb) k_{Tout} [Nm/A_{eff}]

Quotient aus Stillstandsdrehmoment und Stillstandsstrom unter Berücksichtigung der Getriebeverluste.

Drehmomentkonstante (Motor) k_{TM} [Nm/A_{off}]

Quotient aus Stillstandsdrehmoment und Stillstandsstrom.

Durchschnittsdrehmoment T_A [Nm]

Wird das Getriebe mit wechselnden Lasten beaufschlagt, so sollte das durchschnittliche Drehmoment berechnet werden. Dieser Wert sollte den angegebenen Grenzwert $T_{\rm A}$ nicht überschreiten.

Dynamische Axiallast $F_{A \, dyn \, (max)} [N]$

Bei rotierendem Lager maximal zulässige Axiallast, wobei keine zusätzlichen Kippmomente oder Radialkräfte wirken dürfen.

Dynamisches Kippmoment M_{dvn (max)} [Nm]

Bei rotierendem Lager maximal zulässiges Kippmoment, wobei keine Axial- oder Radialkräfte wirken dürfen.

Dynamische Radiallast F_{R dyn (max)} [N]

Bei rotierendem Lager maximal zulässige Radiallast, wobei keine zusätzlichen Kippmomente oder Axialkräfte wirken dürfen.

Dynamische Tragzahl C [N]

Maß für die Last, die ein Abtriebslager aufnimmt, bevor es bei dynamischer Dauerbelastung unnötig schnell bleibenden Schaden erleidet.

Elektrische Zeitkonstante τ_{o} [s]

Die Zeitkonstante gibt an, in welcher Zeit der Strom 63 % des maximal möglichen Wertes bei konstanter Klemmenspannung erreicht.

Entmagnetisierungsstrom I_E [A_{off}]

Beginn der Entmagnetisierung der Rotormagnete.

Gewicht m [kg]

Das im Katalog angegebene Gewicht ist das Nettogewicht ohne Verpackung und gilt nur für Standardausführungen.

Haltemoment der Bremse T_{Br} [Nm]

Drehmoment, bezogen auf den Abtrieb, das der Antrieb bei geschlossener Bremse halten kann.

Haltestrom der Bremse $I_{HBr} [A_{DC}]$

Strom zum Halten der Bremse.

Hohlwellendurchmesser d₁ [mm]

Freier Innendurchmesser der axialen durchgängigen Hohlwelle.

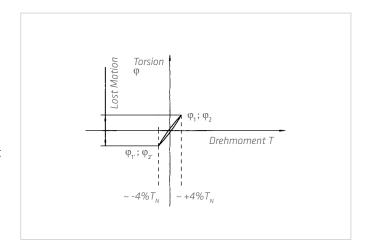
Induktivität (L-L) L_{..} [mH]

Berechnete Anschlussinduktivität ohne Berücksichtigung der magnetischen Sättigung der Motoraktivteile.

Kippsteifigkeit K_R [Nm/arcmin]

Beschreibt das Verhältnis zwischen anliegendem Kippmoment und dem Kippwinkel am Abtriebslager.

Kollisionsdrehmoment T_M [Nm]


Im Falle einer Not-Ausschaltung oder einer Kollision kann das Harmonic Drive® Getriebe mit einem kurzzeitigen Kollisionsdrehmoment beaufschlagt werden. Die Anzahl und die Höhe dieses Kollisionsdrehmomentes sollten möglichst gering sein. Unter keinen Umständen sollte das Kollisionsdrehmoment während des normalen Arbeitszyklus erreicht werden.

48 1015765 11/2015 V01

Lost Motion (Harmonic Drive® Getriebe) [arcmin]

Harmonic Drive® Getriebe weisen kein Spiel in der Verzahnung auf. Der Begriff Lost Motion wird verwendet, um die Torsionssteifigkeit im Bereich kleiner Drehmomente zu charakterisieren.

Das Bild zeigt den Verdrehwinkel ϕ in Abhängigkeit des anliegenden Abtriebsdrehmomentes als Hysteresekurve bei fixiertem Wave Generator. Die Lost Motion Messung wird mit einem Abtriebsdrehmoment von ca. ± 4 % des Nenndrehmomentes des Getriebes durchgeführt.

Massenträgheitsmoment J [kgm²]

Massenträgheitsmoment des Rotors.

Massenträgheitsmoment J_{in} [kgm²]

Das im Katalog angegebene Massenträgheitsmoment des Getriebes bezieht sich auf den Getriebeeingang.

Massenträgheitsmoment J_{out} [kgm²]

Massenträgheitsmoment bezogen auf den Abtrieb.

Maximale Antriebsdrehzahl (Fettschmierung) $n_{in (max)} [min^{-1}]$

Maximal zulässige Getriebeeingangsdrehzahl bei Fettschmierung.

Maximale Antriebsdrehzahl (Ölschmierung) n_{in (max)} [min⁻¹]

Maximal zulässige Getriebeeingangsdrehzahl bei Ölschmierung.

Maximale Drehzahl n_{max} [min-1]

Die maximal zulässige Abtriebsdrehzahl. Diese darf aus Erwärmungsgründen nur kurzzeitig während des Arbeitszyklus wirken. Die maximale Abtriebsdrehzahl kann beliebig oft auftreten, solange die kalkulierte Durchschnittsdrehzahl über den Zyklus im zulässigen Dauerbetrieb der Kennlinie liegt.

Maximales Drehmoment T_{max} [Nm]

Gibt die maximal zulässigen Beschleunigungs- und Bremsdrehmomente an. Für hochdynamische Vorgänge steht das maximale Drehmoment kurzfristig zur Verfügung. Das maximale Drehmoment kann durch den im Regelgerät parametrierten maximalen Strom begrenzt werden. Das maximale Drehmoment kann beliebig oft aufgebracht werden, solange das durchschnittliche Drehmoment innerhalb des zulässigen Dauerbetriebes liegt.

Maximaler Hohlwellendurchmesser d_{H (max)} [mm]

Bei Getrieben mit Hohlwelle gibt dieser Wert den maximalen Durchmesser der axialen Hohlwelle an.

Maximale Leistung P_{max} [W]

Maximale abgegebene Leistung.

Maximale stationäre Zwischenkreisspannung U_{DC (max)} [VDC]

Gibt die für den bestimmungsgemäßen Betrieb des Antriebes maximal zulässige stationäre Zwischenkreisspannung an. Während des Bremsbetriebes kann diese kurzfristig überschritten werden.

Maximalstrom I_{max} [A]

Der Maximalstrom ist der kurzzeitig zulässige Strom.

Mechanische Zeitkonstante τ_m [s]

Die Zeitkonstante gibt an, in welcher Zeit die Drehzahl 63 % des maximal möglichen Wertes bei konstanter Klemmenspannung ohne Last erreicht.

Mittlere Antriebsdrehzahl (Fettschmierung) n_{av (max)} [min⁻¹]

Maximal zulässige durchschnittliche Getriebeeingangsdrehzahl bei Fettschmierung.

Mittlere Antriebsdrehzahl (Ölschmierung) n_{av/max} [min⁻¹]

Maximal zulässige durchschnittliche Getriebeeingangsdrehzahl bei Ölschmierung.

Motor Bemessungsdrehzahl n_N [min⁻¹]

Drehzahl, welche bei Belastung des Motors mit Nenndrehmoment T_N kontinuierlich auftreten darf. Dabei muss der Motor, abhängig von der Baugröße, auf eine definierte Kühlfläche montiert werden.

Motorklemmenspannung (nur Grundwelle) U_M [V_{eff}]

Erforderliche Gundwellenspannung zum Erreichen der angegebenen Performance. Zusätzliche Spannungsverluste können zu Einschränkung der maximal erreichbaren Drehzahl führen.

Motor maximale Drehzahl n_{max} [min⁻¹]

Die maximal zulässige Motordrehzahl.

Nenndrehmoment T_N [Nm]

Das Nenndrehmoment ist ein Referenzdrehmoment für die Berechnung der Getriebelebensdauer. Bei Belastung mit dem Nenndrehmoment und der Nenndrehzahl erreicht das Getriebe die mittlere Lebensdauer L_{so}.

Das Nenndrehmoment T_N wird nicht für die Dimensionierung angewendet.

Nenndrehzahl n_N [min⁻¹], Mechanik

Die Nenndrehzahl ist eine Referenzdrehzahl für die Berechnung der Getriebelebensdauer. Bei Belastung mit dem Nenndrehmoment und der Nenndrehzahl erreicht das Getriebe die mittlere Lebensdauer L_{so} . Die Nenndrehzahl n_{N} wird nicht für die Dimensionierung angewendet.

m	in	-1]

Produktreihe	n _N
CobaltLine®, HFUC, HFUS, CSF, CSG, CSD, SHG, SHD	2000
PMG Baugröße 5	4500
PMG Baugröße 8 bis 14	3500
HPG, HPGP, HPN	3000

Öffnungsstrom der Bremse $I_{OBr} [A_{DC}]$

Strom zum Öffnen der Bremse.

Öffnungszeit der Bremse t_n [ms]

Verzögerungszeit zum Öffnen der Bremse.

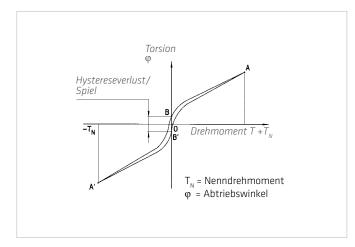
50 1015765 11/2015 V01

Polpaarzahl p []

Anzahl der Paare von magnetischen Polen innerhalb von rotierenden elektrischen Maschinen.

Schließzeit der Bremse t_c [ms]

Verzögerungszeit zum Schließen der Bremse.


Schutzart IP

Die Schutzart nach EN 60034-5 gibt die Eignung für verschiedene Umgebungsbedingungen an.

Spiel (Beschreibung mittels Hysteresekurve) [arcmin]

Harmonic Planetengetriebe zeigen bei Beaufschlagung mit einem Nenndrehmoment die in der Hysteresekurve dargestellte Charakteristik. Zur Ermittlung der Hysteresekurve wird bei blockierter Eingangswelle ein Drehmoment an der Abtriebswelle eingeleitet.

Ausgehend von Punkt O, werden nacheinander die Punkte A-B-A'-B'-A angefahren (siehe Abbildung). Der Betrag B-B' wird als Spiel (oder Hystereseverlust) bezeichnet.

Statische Tragzahl C_n [N]

Maß für die Last, die ein Abtriebslager aufnimmt, bevor es bei statischer Belastung unnötig schnell bleibenden Schaden erleidet.

Statisches Kippmoment M_n [Nm]

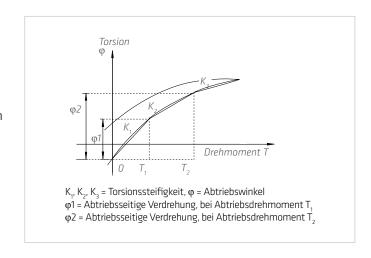
Bei stillstehendem Lager maximal zulässiges Kippmoment, wobei keine Axial- oder Radialkräfte wirken dürfen.

Stillstandsdrehmoment T_n [Nm]

Zulässiges Drehmoment bei stillstehendem Antrieb.

Stillstandsstrom I_n [A_{eff}]

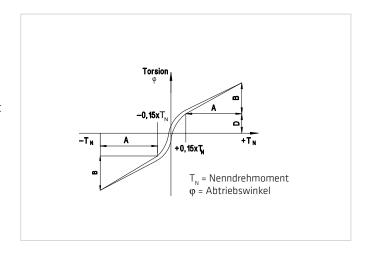
Effektivwert des Motorstrangstroms zur Erzeugung des Stillstandsdrehmomentes.


Teilkreisdurchmesser d_n [mm]

Teilkreisdurchmesser des Abtriebslagers.

Torsionssteifigkeit (Harmonic Drive® Getriebe) K, [Nm/rad]

Das Maß der elastischen Verdrehung am Abtrieb bei einem bestimmten Drehmoment und blockiertem Wave Generator. Die Torsionssteifigkeit $\rm K_3$ beschreibt die Steifigkeit oberhalb eines definierten Referenzdrehmomentes. In diesem Bereich ist die Steifigkeit nahezu linear.


Der angegebene Wert für die Torsionssteifigkeit $\rm K_3$ ist ein Durchschnittswert, der während zahlreicher Tests ermittelt wurde. Die Grenzdrehmomente $\rm T_1$ und $\rm T_2$ sowie Hinweise zur Berechnung des Gesamtverdrehwinkels sind in Kapitel 3 und 4 dieser Dokumentation zu finden.

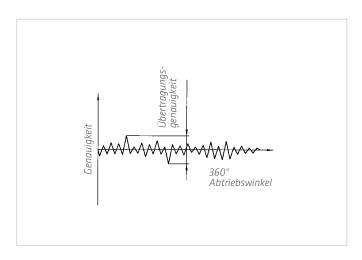
Torsionssteifigkeit (Harmonic Planetengetriebe) K₃ [Nm/rad]

Das Maß der elastischen Verdrehung am Abtrieb bei einem bestimmten Drehmoment und blockierter Eingangswelle. Die Torsionssteifigkeit der Harmonic Planetengetriebe beschreibt die Verdrehung des Abtriebes oberhalb einem Referenzdrehmoment von 15 % des Nenndrehmomentes.

In diesem Bereich ist die Torsionssteifigkeit nahezu linear.

Umgebungstemperatur (Betrieb) [°C]

Gibt den für den bestimmungsgemäßen Betrieb zulässigen Temperaturbereich an.

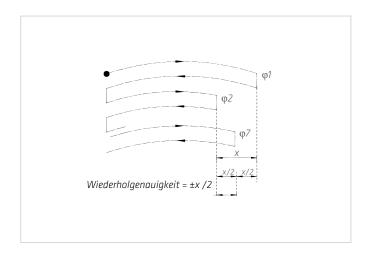

Untersetzung i []

Die Untersetzung ist das Verhältnis von Antriebsdrehzahl zu Abtriebsdrehzahl.

Hinweis für Harmonic Drive® Getriebe: Bei der Standardausführung ist der Wave Generator das Antriebselement, der Flexspline das Abtriebselement und der Circular Spline am Gehäuse fixiert. Da sich die Drehrichtung von Antrieb (Wave Generator) zu Abtrieb (Flexspline) umkehrt, ergibt sich eine negative Untersetzung für Berechnungen, bei denen die Drehrichtung berücksichtigt werden muss.

Übertragungsgenauigkeit [arcmin]

Die Übertragungsgenauigkeit eines Getriebes beschreibt den absoluten Positionsfehler am Abtrieb. Die Messung erfolgt während einer vollständigen Umdrehung des Abtriebselementes mit Hilfe eines hochauflösenden Messsystems. Eine Drehrichtungsumkehr erfolgt nicht. Die Übertragungsgenauigkeit ist definiert als die Summe der Beträge der maximalen positiven und negativen Differenz zwischen theoretischem und tatsächlichem Abtriebswinkel.


Wiederholbares Spitzendrehmoment T_p [Nm]

Gibt die maximal zulässigen Beschleunigungs- und Bremsdrehmomente an. Während des normalen Arbeitszyklus sollte das wiederholbare Spitzendrehmoment $T_{\rm g}$ nicht überschritten werden.

52 1015765 11/2015 V01

Wiederholgenauigkeit [arcmin]

Die Wiederholgenauigkeit eines Getriebes beschreibt die Positionsabweichung, die beim wiederholten Anfahren eines Sollwertes aus jeweils der gleichen Drehrichtung auftritt. Die Wiederholgenauigkeit ist definiert als die Hälfte der maximalen Abweichung, versehen mit einem ± Zeichen.

Widerstand (L-L, 20 °C) $R_{_{L\!-\!L}}\left[\Omega\right]$

Wicklungswiderstand gemessen zwischen zwei Leitern bei einer Wicklungstemperatur von 20 °C. Die Wicklung ist in Sternschaltung ausgeführt.

7.2 Kennzeichnung, Richtlinien und Verordnungen

CE-Kennzeichnung

Mit der CE-Kennzeichnung erklärt der Hersteller oder EU-Importeur gemäß EU-Verordnung, dass das Produkt den geltenden Anforderungen, die in den Harmonisierungsrechtsvorschriften der Gemeinschaft über ihre Anbringung festgelegt sind, genügt.

REACH-Verordnung

Die REACH-Verordnung ist eine EU-Chemikalienverordnung. REACH steht für Registration, Evaluation, Authorisation and Restriction of Chemicals, also für die Registrierung, Bewertung, Zulassung und Beschränkung von Chemikalien.

RoHS EG-Richtlinie

Die RoHS EG-Richtlinie zur Beschränkung der Verwendung bestimmter gefährlicher Stoffe in Elektro- und Elektronikgeräten regelt die Verwendung von Gefahrstoffen in Geräten und Bauteilen.

EG-Konformitätserklärung **EC Declaration of Conformity**

Hersteller, Manufacturer: Harmonic Drive AG Anschrift, Address

Hoenbergstraße 14

65555 Limburg

Produktbezeichnung:

AC Servoantrieb (AC SA) FPA

(in Standardmotorbauform)

Product description:

AC Servoactuator (AG SA) FPA (in standard motor version)

Die oben bezeichneten Produkte stimmen in der von uns in Verkehr gebrachten Ausführung mit den

Vorschriften folgender Europäischer Richtlinien überein. The products described above in the form as delivered are in conformity with the provisions of the following European Directives.

2014/35/EG

Elektrische Betriebsmittel zur Verwendung innerhalb bestimmter Spannungsgrenzen.

2014/35/EC Electrical equipment designed for use within certain voltage limits.

Die Konformität wird nachgewiesen durch die Einhaltung nachfolgender Normen. Conformity is assured through the application of the following Standards.

EN 61800-5-1/2008

2004/108/EG Elektromagnetische Verträglichkeit.

2004/108/EC Electromagnetic compatibility.

Die Konformität wird nachgewiesen durch die nachfolgender Normen. Conformity is assured through the application of the following Standards.

EN 61800-3/2012

Die Sicherheitshinweise und die technischen Dokumentation sind zu beachten. The safety requirements and the technical documentation have to be considered.

CE-Kennzeichnung/ CE marking:

June 2009

Limburg, 01.12.2014

V. Ralf Falk

Leiter Konstruktion und Entwicklung Servotechnik

Section Manager Design and Development Servo Drives Product Manager Servo Drives

A. Andreas Kunz

Produktmanager Servotechnik

Rev.: 06/12